搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度泡沫金激光-X射线转换特性模拟研究

董云松 杨家敏 张璐 尚万里

引用本文:
Citation:

低密度泡沫金激光-X射线转换特性模拟研究

董云松, 杨家敏, 张璐, 尚万里

Simulation of laser to X-ray conversion features influenced by low density gold foam

Dong Yun-Song, Yang Jia-Min, Zhang Lu, Shang Wan-Li
PDF
导出引用
  • 在激光间接驱动惯性约束聚变中, 激光首先与黑腔壁高Z等离子体相互作用转换成强X射线辐射, 再通过高Z腔壁的X射线再辐射而在靶丸表面产生对称辐射以驱动其内爆, 改善腔中激光X射线转换特性非常重要. 利用一维辐射流体程序模拟研究了低密度泡沫金对激光X射线转换特性的影响, 结果表明: 在固定激光参数条件下, 随着Au材料密度降低, 激光X射线转换效率提高, 当泡沫Au密度为0.1 g/cm3时, 转换效率相对提高19%; 同时, 金M带辐射份额随之减少; 对于发光区运动, 存在合适的泡沫Au密度使其得到有效抑制. 从能量平衡的角度分析了转换效率提高的原因: 在激光与低密度泡沫Au作用时, 转换为流体力学动能损耗的能量份额与固体Au相比有所降低, 因而相应的辐射能份额增加. 低密度泡沫Au改善激光X射线转换特性是实现黑腔腔壁优化的一种途径, 模拟结果为进一步开展相应实验研究提供了依据.
    In the laser indirect-driven inertial confinement fusion, laser light is converted into X-rays by laser-plasma interactions in the hohlraum, then at the surface of the capsule the re-emission of hohlraum inner wall would drive a symmetrical radiation source to motivate implosion. It is of great importance to improve the features of laser to X-ray conversion in the hohlraum. The influence of low density gold foam on conversion features was investigated numerically with the help of one-dimensional hydrodynamics code. The numerical simulation results show that conversion efficiency increases with the decrease in gold density under the given laser condition. In particular, it can indeed have more than 19% extra conversion efficiency relatively when solid gold is replaced by gold foam of 0.1 g/cm3 density. In addition, the percentage of M-band decreases. There is an appropriate density of gold foam, at which the movement of plasma are restrained. According to the simulation results of energy balance, we get a higher radiation energy proportion when low density gold foam is selected as the target, and this is due to the decrease of kinetic energy losses compared with solid gold. Anyway, it is an effective approach to optimize the hohlraum by using low density gold foam to improve the features of laser to X-ray conversion, and these simulations would provide a scientific basis for further attempting correlative experiments.
    • 基金项目: 中国工程物理研究院重点发展基金(批准号: 2011A0102005)资助的课题.
    • Funds: Project supported by the Key Item of Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2011A0102005).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Sigel R, Eidmann K, Lavarenne F, Schmalz R F 1990 Phys. Fluids B 2 199

    [3]

    Eidmann K, Schmalz R F, Sigel R 1990 Phys. Fluids B 2 208

    [4]

    Mead W C, Stover E K 1988 Phys. Rev. A 38 5275

    [5]

    Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter J 1990 Phys. Fluids B 2 2437

    [6]

    Dahmani F 1992 Phys. Fluids B 4 1943

    [7]

    Zhang J 1990 High Power Lasers and Particle Beams 2 179 (in Chinese) [张钧 1990 强激光与粒子束 2 179]

    [8]

    Li Y S, Huo W Y, Lan K 2011 Phys. Plasmas 18 022701

    [9]

    Huser G, Courtois C, Monteil M C 2009 Phys. Plasmas 16 032703

    [10]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702

    [11]

    Ze F, Kania D R, Langer S H, Kornblum H, Kauffman R, Kilkenny J, Campbell E M, Tietbohl G 1989 J. Appl. Phys. 66 1935

    [12]

    Nishimura H, Endo T, Shiraga H, Kato Y, Nakai S 1992 Appl. Phys. Lett. 62 1344

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [15]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [16]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [17]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [18]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press) p195

    [19]

    Dewald E L, Rosen M D, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon C, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [20]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) p164 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第164页]

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Sigel R, Eidmann K, Lavarenne F, Schmalz R F 1990 Phys. Fluids B 2 199

    [3]

    Eidmann K, Schmalz R F, Sigel R 1990 Phys. Fluids B 2 208

    [4]

    Mead W C, Stover E K 1988 Phys. Rev. A 38 5275

    [5]

    Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter J 1990 Phys. Fluids B 2 2437

    [6]

    Dahmani F 1992 Phys. Fluids B 4 1943

    [7]

    Zhang J 1990 High Power Lasers and Particle Beams 2 179 (in Chinese) [张钧 1990 强激光与粒子束 2 179]

    [8]

    Li Y S, Huo W Y, Lan K 2011 Phys. Plasmas 18 022701

    [9]

    Huser G, Courtois C, Monteil M C 2009 Phys. Plasmas 16 032703

    [10]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702

    [11]

    Ze F, Kania D R, Langer S H, Kornblum H, Kauffman R, Kilkenny J, Campbell E M, Tietbohl G 1989 J. Appl. Phys. 66 1935

    [12]

    Nishimura H, Endo T, Shiraga H, Kato Y, Nakai S 1992 Appl. Phys. Lett. 62 1344

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [15]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [16]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [17]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [18]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press) p195

    [19]

    Dewald E L, Rosen M D, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon C, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [20]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) p164 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第164页]

  • [1] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制.  , 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [2] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正.  , 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [3] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取.  , 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [4] 王琛, 安红海, 王伟, 方智恒, 贾果, 孟祥富, 孙今人, 刘正坤, 付绍军, 乔秀梅, 郑无敌, 王世绩. 利用软X射线双频光栅剪切干涉技术诊断金等离子体.  , 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [5] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究.  , 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [6] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像.  , 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [7] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验.  , 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [8] 邹晓兵, 王新新, 张贵新, 韩 旻, 罗承沐. 喷气式Z箍缩等离子体辐射软X射线能谱的研究.  , 2006, 55(3): 1289-1294. doi: 10.7498/aps.55.1289
    [9] 黄仙山, 谢双媛, 羊亚平. 各向异性光子晶体中Λ型原子的自发辐射性质.  , 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [10] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究.  , 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [11] 王瑞荣, 王 伟, 王 琛, 董佳钦, 孙今人, 万炳根. 双驱动x射线激光等离子体能谱特性研究.  , 2003, 52(3): 556-560. doi: 10.7498/aps.52.556
    [12] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究.  , 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [13] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度.  , 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [14] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响.  , 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [15] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究.  , 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
    [16] 马洪良, 孙可煦, 易荣清, 崔延莉, 唐道源, 郑志坚. 三倍频激光等离子体X射线转换研究.  , 1996, 45(10): 1688-1693. doi: 10.7498/aps.45.1688
    [17] 郭奇志, 沈文达, 朱莳通. 强激光等离子体中光子的运动.  , 1995, 44(3): 396-400. doi: 10.7498/aps.44.396
    [18] 裴文兵, 常铁强, 张钧. 激光等离子体非平衡X射线发射谱理论研究.  , 1995, 44(11): 1766-1775. doi: 10.7498/aps.44.1766
    [19] 唐永建, 郑志坚, 丁耀南, 冯杰, 陈晓峰. 激光等离子体辐射温度时间特性测量研究.  , 1990, 39(6): 75-79. doi: 10.7498/aps.39.75
    [20] 5—200?范围激光等离子体X射线辐射特性研究.  , 1990, 39(6): 80-84. doi: 10.7498/aps.39.80
计量
  • 文章访问数:  6382
  • PDF下载量:  584
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-14
  • 修回日期:  2012-11-10
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map