-
采用下降法生长技术, 沿a向[1120]生长的掺碳钛宝石晶体, 在切割等加工过程中掺碳钛宝石晶体经常发生定向开裂的现象. 本文对掺碳钛宝石晶体的定向开裂特征和机理进行了分析与研究, 发现定向裂纹是在基质氧化铝晶格的(1100)面上发源, 并且沿着[0001]晶向即c轴方向扩展. 采用晶体结构可视化软件(Crystalmaker)模拟得出, 基质氧化铝晶格原子在(1100)面上的原子排列最为稀疏, 并且在(1100)晶面上, 垂直 [0001]晶向相邻原子间距最大, 在应力作用下晶格 (1100) [0001]系统的开裂强度最低. 采用光学显微镜、扫描电镜(SEM)和电子探针等仪器和手段, 发现在开裂的掺碳钛宝石晶体中沉积了不规则的碳包裹物, 降温过程中包裹物的热膨胀失配引起巨大的内应力, 使得裂纹在晶体最薄弱的系统(1100) [0001]面上发源并扩展, 导致晶体的宏观定向开裂. 该研究对优质钛宝石晶体的生长具有重要的理论和现实意义.Directional cracking in Ti,C:sapphire crystals grown along [1120] by Vertical Bridgman method often occurs in the cutting and processing process. In this work, we discuss the characteristic and mechanism of directional cracking of Ti,C:sapphire, and find that directional cracking originates from (1100) lattice plane and spreads along [0001] orientation. Through the Crystalmaker Simulation software, we find that atomic arrangement on (1100) lattice plane is the most sparse and adjacent atomic spacing is the largest along vertical [0001] direction, so in the system (1100) [0001] of lattice has a minimum cracking strength. Irregular carbon inclusions in the cracked Ti,C:sapphire are observed with optical microscopy, scanning electron microscopy (SEM), and X-ray diffractometry. These inclusions cause great internal stress in the cooling process due to thermal expansion mismatch and cracking originating from and spreading in the weak system (1100) [0001] of lattice. As a consequence, macroscopic directional cracking is observed in the Ti,C:sapphire. The study has important theoretical and practical significance for growing high-quality Ti,C:sapphire crystal.
-
Keywords:
- Ti /
- C:apphire crystal /
- carbon inclusion
[1] Moulton P F 1986 Opt. Soc. Am. B 3 125
[2] Seres J, Moeller A, Seres E, O'Keeffe K, Lenner M 2003 Opt. Lett. 28 19
[3] Wang Buguo, Bliss David F, Callahan Michael J 2009 J. Crystal Growth 311 443
[4] Yang Q H, Zeng Z J, Xu J, Su L B 2006 Acta. Phys. Sin. 55 2726 (in Chinese) [杨秋红, 曾智江, 徐军, 苏良碧 2006 55 2726]
[5] Halliburton L, Scripsic M 1986 Lasers Nonlinear Opt. Mater. SPIE Proc. 681 109
[6] Aggarwal R L, Sanchez A, Stuppi M M, Fahey R E, Strauss A J, Rapoport M R, Khattak C P 1988 J. Quantum Electronics 24 1003
[7] Rapoport W R, Khattak C P 1988 Appl. Opt. 27 2677
[8] Nehari Abdeldjelil, Brenier Alain, Panzer Gerard 2011 Crystal Growth and Design 11 445
[9] Khattak C P, ScovilleA N 1986 Laser and Nonlinear Optical Materials Proc. Of SPIE 681 58
[10] David B Joyce, Frederick Schmid 2010 J. Crystal Growth 312 1138
[11] Nizhankovskiy S V, Dan'ko Y A, Krivonosov E V, Puzikov V M 2010 Inorganic Materials 46 35
[12] Kokta M R Patent EP 0241614(B1)[1990-10-1]
[13] Guan Z D, Zhang Z T, Jiao J S 1992 Physical Properties of Inorganic Materials (Beijing: Tsinghua University Press) p41 (in Chinese) [关振铎, 张中太, 焦金生 1992 无机材料物理性能 第1版 (北京: 清华大学出版社) 第41页]
-
[1] Moulton P F 1986 Opt. Soc. Am. B 3 125
[2] Seres J, Moeller A, Seres E, O'Keeffe K, Lenner M 2003 Opt. Lett. 28 19
[3] Wang Buguo, Bliss David F, Callahan Michael J 2009 J. Crystal Growth 311 443
[4] Yang Q H, Zeng Z J, Xu J, Su L B 2006 Acta. Phys. Sin. 55 2726 (in Chinese) [杨秋红, 曾智江, 徐军, 苏良碧 2006 55 2726]
[5] Halliburton L, Scripsic M 1986 Lasers Nonlinear Opt. Mater. SPIE Proc. 681 109
[6] Aggarwal R L, Sanchez A, Stuppi M M, Fahey R E, Strauss A J, Rapoport M R, Khattak C P 1988 J. Quantum Electronics 24 1003
[7] Rapoport W R, Khattak C P 1988 Appl. Opt. 27 2677
[8] Nehari Abdeldjelil, Brenier Alain, Panzer Gerard 2011 Crystal Growth and Design 11 445
[9] Khattak C P, ScovilleA N 1986 Laser and Nonlinear Optical Materials Proc. Of SPIE 681 58
[10] David B Joyce, Frederick Schmid 2010 J. Crystal Growth 312 1138
[11] Nizhankovskiy S V, Dan'ko Y A, Krivonosov E V, Puzikov V M 2010 Inorganic Materials 46 35
[12] Kokta M R Patent EP 0241614(B1)[1990-10-1]
[13] Guan Z D, Zhang Z T, Jiao J S 1992 Physical Properties of Inorganic Materials (Beijing: Tsinghua University Press) p41 (in Chinese) [关振铎, 张中太, 焦金生 1992 无机材料物理性能 第1版 (北京: 清华大学出版社) 第41页]
计量
- 文章访问数: 6451
- PDF下载量: 917
- 被引次数: 0