搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2009年一次华北强桑拿天气过程的动力识别

杨帅 高守亭 陈斌

引用本文:
Citation:

2009年一次华北强桑拿天气过程的动力识别

杨帅, 高守亭, 陈斌

Dynamical identification of a heavy sauna weather event in northern China in 2009

Yang Shuai, Gao Shou-Ting, Chen Bin
PDF
导出引用
  • 本文数值模拟并诊断分析了2009年7月华北的一次桑拿天过程, 分析了高温高湿天气的环流特征, 温度、 湿度的水平和垂直分布特征, 位涡分布特征等. 分析发现, 此次桑拿天事件高层为反气旋性环流的高压控制, 水平分布图上, 低层相对湿度大. 垂直剖面上, 中低层为下沉气流和暖湿区, 有明显的水汽梯度和垂直温度梯度, 有倾斜的位涡分布. 既然桑拿天发生在夏季普遍高温的大环境之下, 因此靠单纯的温度或湿度来动力识别和诊断桑拿天, 有较大难度. 本文抓住华北地区桑拿天过程高温、 高湿、 高位涡的特点, 引入一个适合于桑拿天的湿热力位涡参数(MTPV, 它表示为▽ q (▽ ▽ Q), 这里q是湿度, 表示为大气或者云中水汽和所有水凝物的总和, 是位温, Q是位涡), 对桑拿天进行动力诊断分析, 并通过实际个例的计算分析作出简化. 个例分析发现, 此次高温高湿的桑拿天过程伴随MTPV的异常. 虽然2009年7月此次华北地区桑拿天过程有较高的温度, 较大的湿度和倾斜位涡发展, 但是单个变量的范围远大于我们要研究的华北地区桑拿天的爆发范围. 而结合这三个变量引入的MTPV及其简化形式, 无论从经向还是纬向剖面图来看, MTPV的异常大值区相对集中在北京及其周边的华北地区对流层的低层, 并维持. 因而, MTPV及其简化形式均能对此次高温高湿的桑拿天进行较好的动力识别。
    A sauna weather event in northern China in July 2009 is numerically simulated and diagnostically analyzed. The atmospheric circulation characteristics, the horizontal and vertical distributions of temperatures and moistures, and the distribution of potential vorticities are studied. It is found that anticyclone dominates the upper troposphere during the sauna weather event. In the horizontal chart, the relative humidity in the lower troposphere is large. From the vertical sections, descending airflow dominates the moist and warm sectors at the middle and lower levels. There are clear humidity gradient, evident vertical gradient of temperature, and slanting distribution of potential vorticity. The sauna weather event occurs in the generally high-temperature environment of summertime, so it is difficult to dynamically identify and diagnose the sauna weather depending on some single factor, e.g., temperature or moisture. According to the high-temperature, large-moisture, and strong-potential vorticity characteristics during the sauna weather in northern China, a moist thermal potential vorticity parameter MTPV, may be expressed as ▽ q (▽ ▽ Q), where q is the sum of water vapor and all hydrometeors including cloud water, rain water, cloud ice, snow and graupel; is potential temperature; Q is potential vorticity) which is appropriate for sauna weather, is introduced. Then it is used to dynamically diagnose sauna weather event. And it is simplified by calculation analysis in case study. It is found that the MTPV anomaly is accompanied by the sauna weather process. Although high temperature, large moisture and strong slanting potential vorticity development present in the sauna weather process in northern China in July 2009, their coverages for these single variables are larger than our target region of this sauna weather event. While for the MTPV and its simplified form combining these variables, their anomalies maintain in the lower troposphere around Beijing and its peripheral areas in northern China, viewing from either zonal or meridional section. Therefore, both MTPV and its simplified form can better dynamically identify this high-temperature and high-humidity sauna weather event.
    • 基金项目: 国家自然科学基金项目(批准号: 40805001, 41105027) 和中国气象科学研究院灾害天气国家重点实验室开放课题项目(批准号: 2009LASW-B02) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 40805001, 41105027), and the Opening Foundation of the State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China (Grant No. 2009LASW-B02).
    [1]

    Kalkstein L S 1993 Lancet 342 1379

    [2]

    Gaffen D J, Ross R J 1998 Nature 396 529

    [3]
    [4]
    [5]

    McGeehin M A, Mirabelli M 2001 Environ Health Perspect 109 185

    [6]
    [7]

    Karl T R, Trenberth K E 2003 Science 302 1719

    [8]
    [9]

    Meehl G A, Tebaldi C 2004 Science 305 994

    [10]

    Li W, Zhu Y F 2007 Meteorological Monthly. 33 108 (in Chinese) [李威, 朱艳峰 2007 气象 33 108]

    [11]
    [12]

    Xie Z, Cao H X 1996 Acta. Meteor. Sinica 54 501 (in Chinese) [谢庄, 曹鸿兴 1996 气象学报 54 501]

    [13]
    [14]

    Zheng S H, Wang S R, Wang Y M 2000 Acta. Geographica. Sinica (Supplement) 55 119 (in Chinese) [郑水红, 王守荣, 王有民 2000 地理学报 55(增刊) 119]

    [15]
    [16]
    [17]

    Wang Y C, Ge G Q, Tao Z Y 2003 Meteorological Monthly 29 23 (in Chinese) [王迎春, 葛国庆, 陶祖钰 2003 气象 29 23]

    [18]
    [19]

    Gao S T, Zhou Y S, Lei T, Sun J H 2005 Sci. China (Series D) 35 107 (in Chinese) [高守亭, 周玉淑, 雷霆, 孙建华 2005 中国科学D辑 35 107]

    [20]

    Ertel H 1960 Gerlands Beitr. Geophys. 69 357

    [21]
    [22]
    [23]

    Zdunkowski W, Bott A 2003 Dynamics of the Atmosphere: A Course in Theoretical Meteorology (1st Ed.) (United Kindom: Cambridge University Press), pp268-270

    [24]

    Wang D H, Yang S, Zhong S X, Han Y 2009 Chinese J. Atmos. Sci. 33 1238 (in Chinese) [王东海, 杨帅, 钟水新, 韩瑛 2009 大气科学 33 1238]

    [25]
    [26]
    [27]
    [28]
    [29]
    [30]
    [31]
    [32]
    [33]
    [34]
    [35]
    [36]
    [37]
    [38]
    [39]
    [40]
    [41]
    [42]
    [43]
    [44]
    [45]
    [46]
    [47]
    [48]
    [49]
  • [1]

    Kalkstein L S 1993 Lancet 342 1379

    [2]

    Gaffen D J, Ross R J 1998 Nature 396 529

    [3]
    [4]
    [5]

    McGeehin M A, Mirabelli M 2001 Environ Health Perspect 109 185

    [6]
    [7]

    Karl T R, Trenberth K E 2003 Science 302 1719

    [8]
    [9]

    Meehl G A, Tebaldi C 2004 Science 305 994

    [10]

    Li W, Zhu Y F 2007 Meteorological Monthly. 33 108 (in Chinese) [李威, 朱艳峰 2007 气象 33 108]

    [11]
    [12]

    Xie Z, Cao H X 1996 Acta. Meteor. Sinica 54 501 (in Chinese) [谢庄, 曹鸿兴 1996 气象学报 54 501]

    [13]
    [14]

    Zheng S H, Wang S R, Wang Y M 2000 Acta. Geographica. Sinica (Supplement) 55 119 (in Chinese) [郑水红, 王守荣, 王有民 2000 地理学报 55(增刊) 119]

    [15]
    [16]
    [17]

    Wang Y C, Ge G Q, Tao Z Y 2003 Meteorological Monthly 29 23 (in Chinese) [王迎春, 葛国庆, 陶祖钰 2003 气象 29 23]

    [18]
    [19]

    Gao S T, Zhou Y S, Lei T, Sun J H 2005 Sci. China (Series D) 35 107 (in Chinese) [高守亭, 周玉淑, 雷霆, 孙建华 2005 中国科学D辑 35 107]

    [20]

    Ertel H 1960 Gerlands Beitr. Geophys. 69 357

    [21]
    [22]
    [23]

    Zdunkowski W, Bott A 2003 Dynamics of the Atmosphere: A Course in Theoretical Meteorology (1st Ed.) (United Kindom: Cambridge University Press), pp268-270

    [24]

    Wang D H, Yang S, Zhong S X, Han Y 2009 Chinese J. Atmos. Sci. 33 1238 (in Chinese) [王东海, 杨帅, 钟水新, 韩瑛 2009 大气科学 33 1238]

    [25]
    [26]
    [27]
    [28]
    [29]
    [30]
    [31]
    [32]
    [33]
    [34]
    [35]
    [36]
    [37]
    [38]
    [39]
    [40]
    [41]
    [42]
    [43]
    [44]
    [45]
    [46]
    [47]
    [48]
    [49]
  • [1] 周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军. 795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用.  , 2022, 71(13): 134204. doi: 10.7498/aps.71.20212422
    [2] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱.  , 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [3] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质.  , 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [4] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [5] 陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰. 2.0 μm处CO2高温谱线参数测量研究.  , 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [6] 胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏. 高长径比柱状金刚石的高温高压合成与机理研究.  , 2012, 61(7): 078102. doi: 10.7498/aps.61.078102
    [7] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析.  , 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [8] 周小刚, 柳士俊, 王秀明, 陶祖钰. 对气象常用坐标系中位涡形式的探讨.  , 2011, 60(5): 059201. doi: 10.7498/aps.60.059201
    [9] 吴文平, 郭雅芳, 汪越胜, 徐爽. 镍基单晶高温合金界面位错网在剪切载荷作用下的演化.  , 2011, 60(5): 056802. doi: 10.7498/aps.60.056802
    [10] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究.  , 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [11] 姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞. 从头算方法研究面心立方铝在高温高压下的热力学状态方程.  , 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [12] 陈环, 彭振康, 傅刚. 碳湿敏膜的非线性感湿特性和导电机理.  , 2009, 58(11): 7904-7908. doi: 10.7498/aps.58.7904
    [13] 朱弢, 王崇愚, 干勇. 镍基单晶高温合金相界面错配位错网络的演化.  , 2009, 58(13): 156-S160. doi: 10.7498/aps.58.156
    [14] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究.  , 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [15] 崔守鑫, 蔡灵仓, 胡海泉, 郭永新, 向士凯, 经福谦. 氯化钠晶体在高温高压下热物理参数的分子动力学计算.  , 2005, 54(6): 2826-2831. doi: 10.7498/aps.54.2826
    [16] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [17] 梁芳营. 高温超导体的热力学性质的研究.  , 2002, 51(4): 898-901. doi: 10.7498/aps.51.898
    [18] 谭启. 高纯铝中的反常位错内耗.  , 1992, 41(8): 1296-1301. doi: 10.7498/aps.41.1296
    [19] 孔庆平. 高铬钢和高铬镍钢在高温下的几个内耗峰.  , 1961, 17(5): 237-245. doi: 10.7498/aps.17.237
    [20] 鮑家善. 雙余隔平方式波束天線.  , 1953, 9(1): 45-56. doi: 10.7498/aps.9.45
计量
  • 文章访问数:  6465
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-11
  • 修回日期:  2011-12-08
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map