-
Understanding of the interaction between Nb and interstitial H is helpful for using Nb metallic membrane as H2 purification selective membrane. By first-principles calculations, the site occupation of H in the interstitials of the bcc Nb lattice is studied, and the relation between the site energy and the size of the interstitial is discussed. The interaction between interstitial H and Nb lattice is analyzed and the influence of the electronic structure on the interaction is discussed. The results show that in addition to the influence of the interstitial size on the H solution energy, strong bonding interaction between H-1s and Nb-3d is another important reason for the low H solution energy in Nb lattice. The H diffusion coefficient in Nb metal is evaluated and results show that it is approximately 7.8× 10-9 m2/s at 500 ℃, Which is in agreement with experimental observation.
-
Keywords:
- interstitials H atom /
- Nb metal /
- ab initio calculations
[1] Muradov N Z, Veziroglu T N 2005 Int. J. Hydrogen Energy 30 225
[2] Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078
[3] Phair J W, Donelson R 2006 Ind. Eng. Chem. Res. 45 5657
[4] Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307
[5] Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501
[6] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103
[7] Sundell P G, Wahnström G 2004 Phys. Rev. Lett. 92 155901
[8] Sundell P G, Wahnström G 2004 Phys. Rev. B 70 224301
[9] Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307
[10] Blomqvist A, Pálsson G K, Araújo C M, Ahuja R, Hjörvarsson B 2010 Phys. Rev. Lett. 105 185901
[11] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[12] Blöchl P E 1994 Phys. Rev. B 50 17953
[13] Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298
[14] Monkhorst H J, Pack J 1976 Phys. Rev. B 13 5188
[15] Westlake D G, Miller J F 1979 J. Less-Common Met. 65 139
[16] Yand Z J 1966 Acta Phys. Sin. 22 281 (in Chinese) [杨正举 1966 22 281]
[17] Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106
[18] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[19] Kutner R 1981 Phys. Lett. A 81 239
[20] Zhang G X, Yukawa H,Watanabe N, Saito Y, Fukaya H,Morinaga M, Nambu T,Matsumoto Y 2008 Int. J. Hydrogen Energy 33 4419
-
[1] Muradov N Z, Veziroglu T N 2005 Int. J. Hydrogen Energy 30 225
[2] Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078
[3] Phair J W, Donelson R 2006 Ind. Eng. Chem. Res. 45 5657
[4] Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307
[5] Lu G, Kaxiras E 2005 Phys. Rev. Lett. 94 155501
[6] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103
[7] Sundell P G, Wahnström G 2004 Phys. Rev. Lett. 92 155901
[8] Sundell P G, Wahnström G 2004 Phys. Rev. B 70 224301
[9] Schober H R, Stoneham A M 1988 Phys. Rev. Lett. 60 2307
[10] Blomqvist A, Pálsson G K, Araújo C M, Ahuja R, Hjörvarsson B 2010 Phys. Rev. Lett. 105 185901
[11] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[12] Blöchl P E 1994 Phys. Rev. B 50 17953
[13] Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298
[14] Monkhorst H J, Pack J 1976 Phys. Rev. B 13 5188
[15] Westlake D G, Miller J F 1979 J. Less-Common Met. 65 139
[16] Yand Z J 1966 Acta Phys. Sin. 22 281 (in Chinese) [杨正举 1966 22 281]
[17] Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128 134106
[18] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[19] Kutner R 1981 Phys. Lett. A 81 239
[20] Zhang G X, Yukawa H,Watanabe N, Saito Y, Fukaya H,Morinaga M, Nambu T,Matsumoto Y 2008 Int. J. Hydrogen Energy 33 4419
计量
- 文章访问数: 7173
- PDF下载量: 768
- 被引次数: 0