-
用有效质量口袋模型描述奇异夸克物质,研究了耦合常数和口袋常数的选取对奇异夸克物质的状态方程及奇异星性质的影响.结果表明,随着耦合常数和口袋常数的增大,奇异夸克物质的状态方程变软,相应的奇异星的引力质量和对应的半径均变小.当耦合常数从0.5增大到2.0时,奇异星的质量从1.43M⊙(M⊙=1.991030 kg)减小到1.25M⊙,相应的半径由8.3 km减小到7.7 km;当口袋常数B1/4由160 MeV增大到175 MeV时,奇异星的质量和半径分别由1.47M⊙和8.6 km减小到1.22M⊙和7.4 km.这说明奇异夸克物质及奇异星的性质明显依赖于模型参数的取值.In this paper we mainly investigate, in the framework of effective mass bag model, how the coupling constant and the bag constant execute their effects on equations of state of strange quark matter, and on the properties of strange stars. Numerical results indicate that with the increase of strong coupling constant and bag constant, equations of state for strange quark matter turn softened, whereas gravitational mass and corresponding radius of strange stars become decreased. For instance the mass of the star decreases from 1.43M⊙(M⊙=1.991030 kg)to 1.25M⊙ and corresponding radius decreases from 8.3 km to 7.7 km while the coupling constant varies from 0.5 to 2.0. As for strange stars, the corresponding values decrease from 1.47M⊙to 1.22M⊙ and 8.6 km and 7.4 km respectively while the bag constant B1/4 increases from 160 MeV to 175 MeV.
-
Keywords:
- model parameters /
- strange star /
- equations of state /
- mass-radius relations
[1] Witten E 1984 Phys. Rev.D 30 272
[2] [3] Dai Z G, Lu T 1994 Acta Phys. Sin. 43 198 (in Chinese) [戴子高、陆 埮 1994 43 198]
[4] [5] Dai Z G, Lu T, Peng Q H 1993 Acta Phys. Sin. 42 1210 (in Chinese) [戴子高、陆 埮、彭秋和 1993 42 1210]
[6] [7] Lai X J, Luo Z Q, Liu J J, Liu H L 2008 Acta Phys. Sin. 57 1535 (in Chinese) [赖祥军、罗志全、刘晶晶、刘宏林 2008 57 1535]
[8] [9] Chodos A, Jaffe R L, Johnson K 1974 Phys. Rev. D 9 3471
[10] [11] Fowler G N, Raha S, Weiner R M 1981 Z. Physics C 9 271
[12] Peng G X, Qiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801
[13] [14] [15] Peng G X, Qiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201
[16] [17] Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 124 246
[18] Buballa M, Oertel M 1999 Phys. Lett. B 457 261
[19] [20] Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659
[21] [22] [23] Bao T, Liu G Z, Zhao E G, Zhu M F 2008 Eur. Phys. J. A 38 287
[24] Oppenheimer J R, Schwinger J S 1939 Phys. Rev. 56 1066
[25] [26] Tolman R C 1939 Phys. Rev. 55 364
[27] -
[1] Witten E 1984 Phys. Rev.D 30 272
[2] [3] Dai Z G, Lu T 1994 Acta Phys. Sin. 43 198 (in Chinese) [戴子高、陆 埮 1994 43 198]
[4] [5] Dai Z G, Lu T, Peng Q H 1993 Acta Phys. Sin. 42 1210 (in Chinese) [戴子高、陆 埮、彭秋和 1993 42 1210]
[6] [7] Lai X J, Luo Z Q, Liu J J, Liu H L 2008 Acta Phys. Sin. 57 1535 (in Chinese) [赖祥军、罗志全、刘晶晶、刘宏林 2008 57 1535]
[8] [9] Chodos A, Jaffe R L, Johnson K 1974 Phys. Rev. D 9 3471
[10] [11] Fowler G N, Raha S, Weiner R M 1981 Z. Physics C 9 271
[12] Peng G X, Qiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801
[13] [14] [15] Peng G X, Qiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201
[16] [17] Nambu Y, Jona-Lasinio G 1961 Phys. Rev. 124 246
[18] Buballa M, Oertel M 1999 Phys. Lett. B 457 261
[19] [20] Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659
[21] [22] [23] Bao T, Liu G Z, Zhao E G, Zhu M F 2008 Eur. Phys. J. A 38 287
[24] Oppenheimer J R, Schwinger J S 1939 Phys. Rev. 56 1066
[25] [26] Tolman R C 1939 Phys. Rev. 55 364
[27]
计量
- 文章访问数: 7381
- PDF下载量: 560
- 被引次数: 0