搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向冲击载荷作用下双壁碳纳米管的动力屈曲

姚小虎 张晓晴 韩强

引用本文:
Citation:

轴向冲击载荷作用下双壁碳纳米管的动力屈曲

姚小虎, 张晓晴, 韩强

Dynamic buckling of double-walled carbon nanotubesunder axial impact loading

Yao Xiao-Hu, Zhang Xiao-Qing, Han Qiang
PDF
导出引用
  • 应用改进的有限元方法,建立考虑层间范德华力作用的壳-弹簧非线性有限元模型,基于B-R运动准则,系统地研究了双壁碳纳米管的动力屈曲问题,得到了轴向冲击载荷作用下双壁碳纳米管的临界动力屈曲载荷和临界动力失效载荷. 研究结果表明,在动力屈曲过程中,双壁碳纳米管层间距的变化非常小,各管的变形相互协调;碳纳米管中应力波的传播导致碳纳米管出现非对称屈曲模态,可明显观测到四个环向波瓣,沿着碳纳米管的轴线方向,四个波瓣的波峰和波谷交替变化. 对碳纳米管动力屈曲问题的研究表明,冲击载荷的大小和持续时间对碳纳米管的动力屈曲有
    Using the modified finite element method, the nonlinear shell-spring finite element model is established with taking the van der waals force into account. Based on the B-R motion criterion, the dynamic bucking behaviors of multi-walled carbon nanotubes are examined systemically. The dynamic critical loads for buckling and failure of double-walled carbon nanotubes under axial impact load are obtained. It is shown that in the dynamic buckling process of multi-walled carbon nanotubes, the deformation of each wall is harmonious to each other and the change of interlayer spacing is very small. The magnitude and the duration of impact load as well as the length of carbon nanotube have greater effects on the dynamic buckling of carbon nanotubes. For the shorter carbon nanotubes, asymmetrical buckling mode appears earlier. The simulations further show that the stress wave propagation in carbon nanotubes induces the asymmetrical buckling mode. In the dynamic buckling process of carbon nanotubes, there are four circumferential lobes that can be observed obviously, and their wave crest and trough of the lobes change alternately.
    • 基金项目: 国家自然科学基金(批准号:10902040/A020602),广东省自然科学基金(批准号:8451064101000229),教育部高校博士点基金和华南理工大学中央高校基金(批准号:2009ZM0238,2009ZM0280),广东省高校优秀青年创新人才培养计划(批准号:LYM08016)和广东省优秀博士学位论文作者资助项目资助的课题.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Iijima S, Brabec C, Maiti A, Bernholc J 1996 J.Chem.Phys. 104 2089

    [3]

    Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678

    [4]

    Postma H W, Teepen T, Yao Z, Grifoni M, Dekker C 2001 Science 292 76

    [5]

    Yakobson B I, Brabec C J, Bernholc J 1996 Phys.Rev.Lett. 76 2511

    [6]

    Liew K M, Wong C H, He X Q Tan M J, Meguid M A 2004 Phys. Rev. B 69 115429

    [7]

    Liew K M, He X Q, Wong C H 2004 Acta. Mater 52 2521

    [8]

    Wang Y, Wang X X, Ni X G, Wu H A 2003 Acta Phys. Sin. 52 3120 (in Chinese) [王 宇、王秀喜、倪向贵、吴恒安 2003 52 3120]

    [9]

    Wang Y, Wang X X, Ni X G, Wu H A 2005 Comp. Mater. Sci. 32 141

    [10]

    Wang Y, Ni X G, Wang X X, Wu H A 2003 Chin. Phys. 12 1007

    [11]

    Chen W,Luo C L 2006 Acta Phys. Sin. 55 386 (in Chinese) [陈 伟、罗成林 2006 55 386]

    [12]

    Ruoff R S, Tersoff J, Lorents D C, Subramoney S, Chan B 1993 Nature 364 514

    [13]

    Hernandez E, Goze C, Bernier P,Rubio A 1998 Phys. Rev. Lett. 80 4502

    [14]

    Zang J L, Yuan Q, Wang F C 2009 Computational Materials Science 46 621

    [15]

    Ru C Q 2001 J. Mech. Phys. Solids. 49 1265

    [16]

    Yao X H, Han Q, Xin H 2008 Acta Phys. Sin. 57 329 (in Chinese) [姚小虎、韩 强、辛 浩 2008 57 329]

    [17]

    Yao X H, Han Q 2008 Computational Materials Science 43 579

    [18]

    Yao X H, Han Q 2007 Euro. J. of Mech. A-solids 26 20

    [19]

    He X Q, Kitipornchai S, Liew K M 2005 J. Mech. Phys. Solids. 53 303

    [20]

    Xie G Q, Han X, Long S Y, Tian J H 2005 Acta Phys. Sin. 54 226 (in Chinese) [谢根全、韩 旭、龙述尧、田建辉 2005 54 226]

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Iijima S, Brabec C, Maiti A, Bernholc J 1996 J.Chem.Phys. 104 2089

    [3]

    Treacy M M J, Ebbesen T W, Gibson J M 1996 Nature 381 678

    [4]

    Postma H W, Teepen T, Yao Z, Grifoni M, Dekker C 2001 Science 292 76

    [5]

    Yakobson B I, Brabec C J, Bernholc J 1996 Phys.Rev.Lett. 76 2511

    [6]

    Liew K M, Wong C H, He X Q Tan M J, Meguid M A 2004 Phys. Rev. B 69 115429

    [7]

    Liew K M, He X Q, Wong C H 2004 Acta. Mater 52 2521

    [8]

    Wang Y, Wang X X, Ni X G, Wu H A 2003 Acta Phys. Sin. 52 3120 (in Chinese) [王 宇、王秀喜、倪向贵、吴恒安 2003 52 3120]

    [9]

    Wang Y, Wang X X, Ni X G, Wu H A 2005 Comp. Mater. Sci. 32 141

    [10]

    Wang Y, Ni X G, Wang X X, Wu H A 2003 Chin. Phys. 12 1007

    [11]

    Chen W,Luo C L 2006 Acta Phys. Sin. 55 386 (in Chinese) [陈 伟、罗成林 2006 55 386]

    [12]

    Ruoff R S, Tersoff J, Lorents D C, Subramoney S, Chan B 1993 Nature 364 514

    [13]

    Hernandez E, Goze C, Bernier P,Rubio A 1998 Phys. Rev. Lett. 80 4502

    [14]

    Zang J L, Yuan Q, Wang F C 2009 Computational Materials Science 46 621

    [15]

    Ru C Q 2001 J. Mech. Phys. Solids. 49 1265

    [16]

    Yao X H, Han Q, Xin H 2008 Acta Phys. Sin. 57 329 (in Chinese) [姚小虎、韩 强、辛 浩 2008 57 329]

    [17]

    Yao X H, Han Q 2008 Computational Materials Science 43 579

    [18]

    Yao X H, Han Q 2007 Euro. J. of Mech. A-solids 26 20

    [19]

    He X Q, Kitipornchai S, Liew K M 2005 J. Mech. Phys. Solids. 53 303

    [20]

    Xie G Q, Han X, Long S Y, Tian J H 2005 Acta Phys. Sin. 54 226 (in Chinese) [谢根全、韩 旭、龙述尧、田建辉 2005 54 226]

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 林旖旎, 马立, 杨权, 陈涛. 径向压缩碳纳米管的电子输运性质.  , 2021, (): . doi: 10.7498/aps.70.20211370
    [3] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [4] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究.  , 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [5] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [6] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟.  , 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [7] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率.  , 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [8] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究.  , 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [9] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究.  , 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [10] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究.  , 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [11] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟.  , 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [12] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [13] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究.  , 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [14] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发.  , 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [15] 姚小虎, 韩 强. 热力耦合作用下双层碳纳米管的扭转屈曲.  , 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响.  , 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响.  , 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  8159
  • PDF下载量:  587
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2010-11-25
  • 刊出日期:  2011-09-15

/

返回文章
返回
Baidu
map