搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用圈量子引力解除Schwarichild-de Sitter黑洞的时空奇点

刘成周 余国祥 谢志堃

引用本文:
Citation:

用圈量子引力解除Schwarichild-de Sitter黑洞的时空奇点

刘成周, 余国祥, 谢志堃

The spacetime singularity resolution of Schwarichild-de Sitter black hole in loop quantum gravity

Liu Cheng-Zhou, Yu Guo-Xiang, Xie Zhi-Kun
PDF
导出引用
  • 通过引入圈量子引力中holonomy基本变量的类比变量和采用相应的量子化方法,对Schwarichild-de Sitter 黑洞中心附近的引力场进行量子化.分析和计算了黑洞中心附近的1/r和曲率标量的谱分布,得到了它们均存在有限上界的结果.通过求解经典时空奇点r=0附近的量子哈密顿约束方程,给出了黑洞波函数在黑洞中心附近的时间演化行为,得到了该波函数可以通过经典奇点进行量子演化的结果.
    By using the analog variable of the holonomy variable of loop quantum gravity and the corresponding quantization method, the gravity field near the center of the Schwarichild-de Sitter black hole is processed though quantization. The spectrums of 1/r and the curvature invariant are computed near the black hole center and the result that the both spectrums is bounded from above are obtained. Following the above quantization method and by computing the quantum Hamiltonian constraint equation of the gravity field near the classical singularity r=0, the evolution formula of the black hole wave function is obtained and the result that the wave function can evolve though the classical singularity is obtained.
    • 基金项目: 国家自然科学基金(批准号:10375008),浙江省自然科学基金(批准号:Y6090739),山东省自然科学基金(批准号:Y2008A33),山东省教育厅科研发展计划(批准号:J08LI51)资助的课题.
    [1]

    [1]Smolin L 2004 arXiv:hep-th/0408048

    [2]

    [2]Ashtekar A, Lewandomski J 2004 Class,Quant. Grav. 21 R53

    [3]

    [3]Thiemann T 2001 arXiv: gr-qc/0110034

    [4]

    [4]Rovelli C, Smolin L 1995 Nucl. Phys. B 442 593

    [5]

    [5]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1289

    [6]

    [6]Bianchi E 2008 arXiv: gr-qc/0806.4710.

    [7]

    [7]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1395

    [8]

    [8]Modesto L 2005 arXiv:gr-qc/0504043

    [9]

    [9]Ashtekar A 2008 arXiv:gr-qc:0812.4703

    [10]

    [10]Bojowald M 2001 Phys. Rev. Lett. 86 5227

    [11]

    [11]Viqar H, Oliver W 2004 Phys. Rev. D 69 084016

    [12]

    [12]Modesto L 2004 Phys. Rev. D 70 124009

    [13]

    [13]Abhay Ashtekar, Martin Bojowald 2006 Class.Quant.Grav. 23 391

    [14]

    [14]Bojowald.M 2001 Phys. Rev.D 64 084018

    [15]

    [15]Ashtekar A, Bojowald M, Lewandomski J 2003 Adv. Theor. Math. Phys. 7 233

    [16]

    [16]Ashtekar A, Bojowald M 2005 Class. Quant.Grav. 22 3349

    [17]

    [17]Ashtekar A, Taveras V, Varadarajan M 2008 arXiv:gr-qc/0801.1811

    [18]

    [18]Rovelli C 1996 Phys. Rev. Lett. 77 3288

    [19]

    [19]Ashtekar A et al 1998 Phys. Rev. Lett. 90 904

    [20]

    [20]Corichi A, Diaz-Polo Z, Fernandez-Borija E 2007 Phys. Rev. Lett. 98 131801

    [21]

    [21]Bekenstein J D 1973 Phys. Rev. D 7 2333

    [22]

    [22]Hawking S W 1975 Commun. Math. Phys. 43 199

    [23]

    [23]Wald R M 2006 The Thermodynamics of Black Holes (US: Springer US)

    [24]

    [24]Jing J L 1998 Int. J. Theor. Phys. 37 1441

    [25]

    [25]Shen Y G 2002 Phys. Lett. B 537 187

    [26]

    [26]Zhao R,Zhang L C,Li H F 2008 Acta Phys.Sin. 57 7463(in Chinese)[赵仁、张丽春、李怀繁 2008 57 7463]

    [27]

    [27]Zhang J Y ,Zhao Z 2006 Acta Phys.Sin. 55 3796 (in Chinese)[张靖仪、赵峥 2006 55 3796]

    [28]

    [28]Meng Q M,jiang J J,Liu J L,Zheng D L 2009 Acta Phys.Sin. 58 78(in Chinese)[孟庆苗、蒋继建、刘景伦、郑德力 2009 58 78]

    [29]

    [29]Liu C Z, Zhao Z 2006 Acta Phys.Sin. 55 1607(in Chinese)[刘成周、赵峥 2006 55 1607]

    [30]

    [30]Liu W B 2007 Acta Phys.Sin. 56 6164(in Chinese)[刘文彪 2007 56 6164]

    [31]

    [31]Jiang Q Q,Wu S Q,Cai M 2007 Acta Phys.Sin. 56 3083(in Chinese)[蒋青权、吴双清、蔡瑁 2007 56 3083]

    [32]

    [32]He T M,Fan J H,Wang Y J 2008 Chin. Phys. B 17 2321

    [33]

    [33]Mi L Q,Li Z H 2006 Chin. Phys. 15 1184

    [34]

    [34]Wang B B2008 Chin. Phys. B 17 467

    [35]

    [35]Norbert Straumann 2002 arXiv:astro-ph/0203330

    [36]

    [36]Kotter F 1918 Ann.Phys. 56 401[37]Thiemann T 1998 Class. Quant. Grav. 15 839

    [37]

    [38]Halvorson H 2004 Studies in History and Philosophy of Modern Physics 35 45[39]Liu L, Zhao Z 2004 General Theory of Relativity (Second Edition)(Beijing:Higher Education Press) (in Chinese)[刘辽、赵峥 2004广义相对论(第二版) (北京:高等教育出版社)]

  • [1]

    [1]Smolin L 2004 arXiv:hep-th/0408048

    [2]

    [2]Ashtekar A, Lewandomski J 2004 Class,Quant. Grav. 21 R53

    [3]

    [3]Thiemann T 2001 arXiv: gr-qc/0110034

    [4]

    [4]Rovelli C, Smolin L 1995 Nucl. Phys. B 442 593

    [5]

    [5]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1289

    [6]

    [6]Bianchi E 2008 arXiv: gr-qc/0806.4710.

    [7]

    [7]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1395

    [8]

    [8]Modesto L 2005 arXiv:gr-qc/0504043

    [9]

    [9]Ashtekar A 2008 arXiv:gr-qc:0812.4703

    [10]

    [10]Bojowald M 2001 Phys. Rev. Lett. 86 5227

    [11]

    [11]Viqar H, Oliver W 2004 Phys. Rev. D 69 084016

    [12]

    [12]Modesto L 2004 Phys. Rev. D 70 124009

    [13]

    [13]Abhay Ashtekar, Martin Bojowald 2006 Class.Quant.Grav. 23 391

    [14]

    [14]Bojowald.M 2001 Phys. Rev.D 64 084018

    [15]

    [15]Ashtekar A, Bojowald M, Lewandomski J 2003 Adv. Theor. Math. Phys. 7 233

    [16]

    [16]Ashtekar A, Bojowald M 2005 Class. Quant.Grav. 22 3349

    [17]

    [17]Ashtekar A, Taveras V, Varadarajan M 2008 arXiv:gr-qc/0801.1811

    [18]

    [18]Rovelli C 1996 Phys. Rev. Lett. 77 3288

    [19]

    [19]Ashtekar A et al 1998 Phys. Rev. Lett. 90 904

    [20]

    [20]Corichi A, Diaz-Polo Z, Fernandez-Borija E 2007 Phys. Rev. Lett. 98 131801

    [21]

    [21]Bekenstein J D 1973 Phys. Rev. D 7 2333

    [22]

    [22]Hawking S W 1975 Commun. Math. Phys. 43 199

    [23]

    [23]Wald R M 2006 The Thermodynamics of Black Holes (US: Springer US)

    [24]

    [24]Jing J L 1998 Int. J. Theor. Phys. 37 1441

    [25]

    [25]Shen Y G 2002 Phys. Lett. B 537 187

    [26]

    [26]Zhao R,Zhang L C,Li H F 2008 Acta Phys.Sin. 57 7463(in Chinese)[赵仁、张丽春、李怀繁 2008 57 7463]

    [27]

    [27]Zhang J Y ,Zhao Z 2006 Acta Phys.Sin. 55 3796 (in Chinese)[张靖仪、赵峥 2006 55 3796]

    [28]

    [28]Meng Q M,jiang J J,Liu J L,Zheng D L 2009 Acta Phys.Sin. 58 78(in Chinese)[孟庆苗、蒋继建、刘景伦、郑德力 2009 58 78]

    [29]

    [29]Liu C Z, Zhao Z 2006 Acta Phys.Sin. 55 1607(in Chinese)[刘成周、赵峥 2006 55 1607]

    [30]

    [30]Liu W B 2007 Acta Phys.Sin. 56 6164(in Chinese)[刘文彪 2007 56 6164]

    [31]

    [31]Jiang Q Q,Wu S Q,Cai M 2007 Acta Phys.Sin. 56 3083(in Chinese)[蒋青权、吴双清、蔡瑁 2007 56 3083]

    [32]

    [32]He T M,Fan J H,Wang Y J 2008 Chin. Phys. B 17 2321

    [33]

    [33]Mi L Q,Li Z H 2006 Chin. Phys. 15 1184

    [34]

    [34]Wang B B2008 Chin. Phys. B 17 467

    [35]

    [35]Norbert Straumann 2002 arXiv:astro-ph/0203330

    [36]

    [36]Kotter F 1918 Ann.Phys. 56 401[37]Thiemann T 1998 Class. Quant. Grav. 15 839

    [37]

    [38]Halvorson H 2004 Studies in History and Philosophy of Modern Physics 35 45[39]Liu L, Zhao Z 2004 General Theory of Relativity (Second Edition)(Beijing:Higher Education Press) (in Chinese)[刘辽、赵峥 2004广义相对论(第二版) (北京:高等教育出版社)]

  • [1] 潘伟珍, 杨学军, 骆金彩. 新乌龟坐标变换下的动态Kinnersley黑洞的Hawking辐射.  , 2011, 60(10): 109701. doi: 10.7498/aps.60.109701
    [2] 邹伯夏, 颜骏, 李季根. 黑洞背景下费米物质能量密度涨落的计算.  , 2010, 59(11): 7602-7606. doi: 10.7498/aps.59.7602
    [3] 杨 波. 直线加速Kinnersley黑洞中Dirac粒子的热辐射.  , 2008, 57(2): 1278-1284. doi: 10.7498/aps.57.1278
    [4] 刘成周, 张昌平. 二维静态时空中Dirac场的重正化能动张量和Casimir效应.  , 2007, 56(4): 1928-1937. doi: 10.7498/aps.56.1928
    [5] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射.  , 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [6] 郑元强. 动态广义球对称含荷黑洞Dirac场的熵.  , 2006, 55(7): 3272-3276. doi: 10.7498/aps.55.3272
    [7] 刘成周, 赵 峥. Gibbons-Maeda dilaton 黑洞的纠缠熵.  , 2006, 55(4): 1607-1615. doi: 10.7498/aps.55.1607
    [8] 李传安, 苏九清. Kerr-Newman黑洞的谐振子模型及量子面积谱.  , 2006, 55(9): 4433-4436. doi: 10.7498/aps.55.4433
    [9] 韩亦文. 用量子隧穿法研究带质量四极矩静态黑洞的Hawking辐射.  , 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [10] 蒋继建, 李传安. Kerr黑洞的量子面积谱及微黑洞的最小质量.  , 2005, 54(8): 3958-3961. doi: 10.7498/aps.54.3958
    [11] 孙学锋, 景 玲, 刘文彪. 黑洞熵无截断薄层模型的改进与推广.  , 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [12] 杨树政. 对动态缓变Reissner-Nordstr?m黑洞量子辐射特征的研究.  , 2004, 53(11): 4007-4014. doi: 10.7498/aps.53.4007
    [13] 韩亦文, 洪 云. Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵.  , 2004, 53(10): 3270-3273. doi: 10.7498/aps.53.3270
    [14] 孟庆苗. 静态球对称黑洞Dirac场的Stefan-Boltzmann定律.  , 2003, 52(8): 2102-2104. doi: 10.7498/aps.52.2102
    [15] 李传安, 孟庆苗, 苏九清. 静态球对称黑洞Dirac场的统计熵.  , 2002, 51(8): 1897-1900. doi: 10.7498/aps.51.1897
    [16] 宋太平, 侯晨霞, 黄金书. 一般球对称带电蒸发黑洞的熵.  , 2002, 51(8): 1901-1906. doi: 10.7498/aps.51.1901
    [17] 宋太平, 侯晨霞, 史旺林. Vaidya-Bonner黑洞的熵.  , 2002, 51(6): 1398-1402. doi: 10.7498/aps.51.1398
    [18] 朱云峰, 余洪伟. 单极子荷电黑洞时空背景中有质量标量场的衰减.  , 2002, 51(9): 1933-1936. doi: 10.7498/aps.51.1933
    [19] 李传安. 黑洞的普朗克绝对熵公式.  , 2001, 50(5): 986-989. doi: 10.7498/aps.50.986
    [20] 李传安. 黑洞的视界面公式.  , 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
计量
  • 文章访问数:  8888
  • PDF下载量:  1066
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-09
  • 修回日期:  2009-06-03
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map