-
通过选取另一类种子解,给出了(2+1)维非线性KdV方程的一类变量分离新解.适当地选择变量分离新解中的任意函数和条件函数,揭示了一类新型孤子结构,如周期性孤波结构、环状孤子结构、曲线型孤子结构等.可以发现(2+1)维非线性KdV方程存在的这类新型孤子结构,是无法通过以往文献中给出的通用变量分离表达式得到的,而且这类新型孤子结构对于实际自然现象的解释有积极的意义.
-
关键词:
- 变量分离法 /
- (2+1)维非线性KdV方程 /
- 新孤子结构
A new variable separation approach for the (2+1)-dimensional nonlinear KdV equations is obtained by using variable separation technique and selecting a class of new seed solutions. Some new kinds of periodic soliton structutres, ring form soliton structures and curvilinear soliton structures are revealed by selecting the arbitrary functions appropriately. These structures, which can not be obtained from the formula commonly used in literature, are first reported.-
Keywords:
- variable separation approach /
- (2+1)-dimensional nonlinear KdV equation /
- new soliton structures
计量
- 文章访问数: 8167
- PDF下载量: 1526
- 被引次数: 0