Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conductive behavior and mechanism of carbon rods during preparing porous aluminum oxide by anodization

YANG Shumin LI Xin GU Jianjun QI Yunkai

Citation:

Conductive behavior and mechanism of carbon rods during preparing porous aluminum oxide by anodization

YANG Shumin, LI Xin, GU Jianjun, QI Yunkai
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Porous anodic aluminum oxide (AAO) films, due to their excellent dielectric, mechanical, and optical properties, have been widely used in electronic devices, catalytic supports, and optical materials. Anodization is the primary method for fabricating high-quality porous AAO films. The conductive behavior and mechanism of commonly used carbon rod counter electrodes are significant factors influencing the microstructure and properties of the films. In this study, a phosphoric acid solution with a mass fraction of 6% is used as the electrolyte, circular aluminum foil serves as the anode, and carbon rods are used as the counter electrodes spaced 15 cm apart. The oxidation time is fixed at 40 s. The conductive behaviors of the carbon rod under oxidation voltages ranging from 100 to 140 V are experimentally investigated. The results show that the pore depth and diameter of the AAO film symmetrically decrease from the film center toward the edges. When the oxidation voltage is below 110 V, the gradients of pore depth and diameter from the center outward are relatively small, resulting in a macroscopically uniform structural color. At an oxidation voltage of 110 V, the gradients of pore depth and diameter increase significantly, resulting in iridescent concentric ring structural colors. As the voltage increases further, the gradients become more pronounced, the number of structural color rings increases, and the visible color gamut significantly broadens. Electromagnetic and electrochemical theories are utilized to calculate the conductive behaviors of the carbon rod under different oxidation voltages and to analyze its conduction mechanism. The carbon rod is found to exhibit “quasi-point electrode” conductive characteristics, with the selection of point electrode positions on the carbon rod following the principle of minimizing the resistance between the two electrodes. This finding not only enriches the electrochemical theory of anodization but also provides theoretical and experimental support for fabricating multifunctional AAO films.
  • 图 1  电化学实验装置图

    Figure 1.  Diagram of electrochemical experimental setup.

    图 2  氧化电压分别为100, 110, 120, 130和140 V, 氧化时间均为40 s的薄膜数码照片

    Figure 2.  Digital photographs of thin films prepared under conditions with oxidation voltages of 100, 110, 120, 130, and 140 V, and oxidation times of 40 seconds each.

    图 3  (a)氧化电压大于110 V时电流线示意图; (b)AAO薄膜测试区域图

    Figure 3.  (a) Current line diagram when the oxidation voltage is greater than 110 V; (b) AAO film test area map.

    图 4  氧化电压140 V, 氧化时间40 s制备的AAO薄膜不同区域的SEM图 (a) 薄膜A区域; (b) 薄膜B区域; (c) 薄膜C区域; (d) 薄膜D区域; (e) 薄膜E区域; (f) 薄膜F区域

    Figure 4.  Surface electron microscopic images of different regions of AAO films prepared at oxidation voltage of 140 V, oxidation time of 40 s: (a) Region A; (b) region B; (c) region C; (d) region D; (e) region E; (f) region F.

    图 5  图像二值法计算AAO孔隙率示意图 (a) 先将图像二值化; (b) 阈值选择; (c) 面积计算

    Figure 5.  Diagram illustrating the calculation of porosity of AAO using image binarization method: (a) Convert the image to a binary format; (b) threshold selection; (c) area calculation.

    图 6  氧化电压140 V, 氧化时间40 s制备的AAO薄膜不同区域的SEM截面图 (a) 薄膜A区域; (b) 薄膜B区域; (c) 薄膜C区域; (d) 薄膜D区域; (e) 薄膜E区域; (f) 薄膜F区域

    Figure 6.  Cross-sectional electron microscopy images of AAO films prepared at an oxidation voltage of 140 V and an oxidation time of 40 s, showing different regions: (a) Region A; (b) region B; (c) region C; (d) region D; (e) region E; (f) region F.

    图 7  (a) AAO薄膜厚度截面示意图; (b) 100 V制备的AAO薄膜测试区域图

    Figure 7.  (a)AAO film thickness cross-section diagram; (b)test area map of AAO film fabricated at 100 V.

    图 8  氧化电压100 V, 氧化时间40 s制备的AAO薄膜不同区域的SEM图 (a), (d) 薄膜A区域的表面和截面SEM照片; (b), (e) 薄膜B区域的表面和截面SEM照片; (c), (f) 薄膜C区域的表面和截面SEM照片

    Figure 8.  SEM images of different regions of the AAO film prepared at an anodization voltage of 100 V and an anodization time of 40 s: (a), (d) Surface SEM image of region A in film; (b), (e) surface SEM image of region B in film; (c), (f) surface SEM image of region C in film.

    图 9  氧化电压100 V时等效电流线示意图

    Figure 9.  Equivalent current line diagram at an oxidation voltage of 100 V.

    图 10  (a) 碳球点电极电流线示意图; (b) 碳球点电极、氧化电压30 V、氧化时间为4 min数码照片; (c) 碳球点电极、氧化电压30 V、氧化时间为4 min样品的测试区域

    Figure 10.  (a) Schematic diagram of current lines for carbon sphere microelectrode; (b) digital photograph of carbon sphere microelectrode at an oxidation voltage of 30 V and oxidation time of 4 min; (c) test area of the sample with carbon sphere microelectrode at an oxidation voltage of 30 V and oxidation time of 4 min.

    图 11  碳球点电极、氧化电压30 V, 氧化时间4 min制备的AAO薄膜不同区域的表面电镜图 (a) 区域A; (b) 区域B; (c) 区域C; (d) 区域D

    Figure 11.  Surface SEM images of AAO films prepared with a carbon sphere point electrode, oxidation voltage of 30 V, and oxidation time of 4 min from different regions: (a) Region A; (b) region B; (c) region C; (d) region D.

    图 12  碳球点电极、氧化电压30 V, 氧化时间4 min制备的AAO薄膜不同区域的截面电镜图 (a) 区域A; (b) 区域B; (c) 区域C; (d) 区域D

    Figure 12.  Cross-sectional SEM images of AAO films prepared with a carbon sphere point electrode, oxidation voltage of 30 V, and oxidation time of 4 min from different regions: (a) Region A; (b) region B; (c) region C; (d) region D.

    图 13  碳棒“准点电极”氧化示意图

    Figure 13.  Schematic diagram of oxidation of carbon rod “quasi-point electrode”.

    图 14  碳棒作为“准点电极”导电机理探讨示意图

    Figure 14.  Schematic diagram for investigating the conduction mechanism of carbon rod as a "quasi-point electrode".

    图 15  图14(b)O与$ {O}^{\prime} $距离分别为0, 0.2, 0.4和0.6 cm, 氧化电压为110 V, 氧化时间为40 s条件下制备的AAO薄膜数码照片

    Figure 15.  In Fig.14(b) shows digital photographs of AAO films prepared under an oxidation voltage of 110 V and an oxidation time of 40 s, with O-to-$ {O}^{\prime} $ distances of 0, 0.2, 0.4, and 0.6 cm, respectively.

    表 1  氧化电压140 V, 氧化时间40 s的氧化铝薄膜测量参数和计算数据

    Table 1.  Measurement parameters and calculation data of alumina film with oxidation voltage of 140 V, oxidation time of 40 s.

    区域ABCDEF
    孔隙率0.04630.04570.04480.04260.04180.0377
    薄膜厚度/nm550458386250220178
    有效折射率1.62
    干涉级别/m222111
    反射波长/nm713594500540475385
    对应颜色红色黄色绿色绿色蓝色紫色
    DownLoad: CSV

    表 2  氧化电压100 V, 氧化时间40 s的氧化铝薄膜测量参数和计算数据

    Table 2.  Measurement parameters and calculation data of alumina film with oxidation voltage of 100 V, oxidation time of 40 s.

    区域ABC
    平均孔半径/nm109.59
    孔隙率0.04250.04100.0382
    薄膜厚度/nm264254230
    有效折射率1.621.621.62
    干涉级别/m111
    反射波长/nm570549497
    对应颜色绿色绿色绿色
    DownLoad: CSV

    表 3  碳球点电极、氧化电压30 V, 氧化时间4 min的氧化铝薄膜测量参数和计算数据

    Table 3.  Measurement parameters and calculation data for the aluminum oxide film with carbon sphere point electrode, oxidation voltage of 30 V, and oxidation time of 4 min.

    区域ABCD
    平均孔径/nm33302826
    平均孔间距/nm9797100105
    孔隙率0.1270.1060.0930.061
    薄膜厚度/nm300263226190
    有效折射率1.571.581.591.61
    干涉级别/m1111
    反射波长/nm628554479408
    对应颜色红色绿色蓝色紫色
    DownLoad: CSV

    表 4  碳棒平移不同位置氧化电流对应表

    Table 4.  Table of oxidation currents corresponding to different lateral positions of the carbon rod.

    等效角θ/(°)(图14(a) $ {O}^{\prime}{O}^{\prime\prime} $
    和$ {O}^{\prime}A $ 的夹角, 或图14(b)
    $ {O}^{\prime\prime}O与{O}^{\prime\prime}{O}^{\prime} $ 的夹角)
    15° 30° 60°
    导电电流/mA 0.44 0.31 0.24 0.14
    DownLoad: CSV
    Baidu
  • [1]

    Kushnir S E, Napolskii K S 2018 Mater. Des. 144 140Google Scholar

    [2]

    Liu S X, Tian J L, Zhang W 2021 Nanotechnology 32 222001Google Scholar

    [3]

    Amouzadeh Tabrizi M, Ferré-Borrull J, Marsal L F 2020 Microchim. Acta 187 230Google Scholar

    [4]

    Dolbik A V, Sasinovich D A, Zavadskii S M, Golosov D A, Meledina M V, Rabatuev G G, Lazarouk S K 2025 Surf. Eng. Appl. Electrochem. 61 333Google Scholar

    [5]

    Acosta L K, Law C S, Santos A, Ferré-Borrull J, Marsal L F 2022 APL Photonics 7 026108Google Scholar

    [6]

    Ruiz-Clavijo A, Caballero-Calero O, Martín-González M 2021 Nanoscale 13 2227Google Scholar

    [7]

    Pappas J M, Thakur A R, Dong X Y 2020 Mater. Des. 192 108711Google Scholar

    [8]

    Szwachta G, Januszewska B, Włodarski M, Norek M 2023 Appl. Surf. Sci. 607 155031Google Scholar

    [9]

    Li P Z, Zhang Y, Zhang J Z, Liu L, Wang S, Liu R, Song Y, Zhu X F 2024 Trans. Nonferrous Met. Soc. China 34 2918Google Scholar

    [10]

    Sun X D, Guo X, Zhang J H, Wu J, Shi Y, Sun H Y, Pan C F, Pan L J 2024 Rare Met. 43 5410Google Scholar

    [11]

    He C Y, Qin L Y, Zhang S Y, Chen B Y, Zhu J Q, Lin F, Zhu X F 2024 Ceram. Int. 50 30906Google Scholar

    [12]

    岂云开, 杨淑敏, 李欣, 徐芹, 顾建军 2022 71 017801Google Scholar

    Qi Y K, Yang S M, Li X, Xu Q, Gu J J 2022 Acta Phys. Sin. 71 017801Google Scholar

    [13]

    Evertsson J, Vinogradov N A, Harlow G S, Carlà F, McKibbin S R, Rullik L, Linpé W, Felici R, Lundgren E 2018 RSC Adv. 8 18980Google Scholar

    [14]

    Kim B, Youn Y, Park Y S, Moon D N, Kang K, Han S, Lee J S 2016 Scr. Mater. 122 102Google Scholar

    [15]

    Roslyakov I V, Gordeeva E O, Napolskii K S 2017 Electrochim. Acta 241 362Google Scholar

    [16]

    Białek E, Włodarski M, Norek M 2020 Materials 13 3185Google Scholar

    [17]

    Kant K, Low K S, Marshal A, Shapter J G, Losic D, 2010 Appl. Mater. 2 3447Google Scholar

    [18]

    杨淑敏, 韩伟, 顾建军, 李海涛, 岂云开 2015 64 076102Google Scholar

    Yang S M, Han W, Gu J J, Li H T, Qi Y K 2015 Acta Phys. Sin. 64 076102Google Scholar

    [19]

    Yang S M, Wang A, Lin X M, Qi Y K, Shi G C, Han W, Gu J J 2024 Crystals 14 1102Google Scholar

    [20]

    Yang S M, Wang A, Li X, Shi G C, Qi Y K, Gu J J 2022 Molecules 27 4932Google Scholar

    [21]

    Brzózka A, Brudzisz A, Jeleń A, Kozak M, Wesół J, Iwaniec M, Sulka G D 2021 Mater. Sci. Eng. , B 263 114801Google Scholar

    [22]

    Li X Q, Wang J H, Fu Z Y, Dai G M, Tang Y, Chu F, Hou T, Wang Y, Song Y 2025 Chem. Select 10 e202500507

    [23]

    李国栋, 王倩, 邓保霞, 张雅晶 2014 63 247802Google Scholar

    Li G D, Wang Q, Deng B X, Zhang Y J 2014 Acta Phys. Sin. 63 247802Google Scholar

    [24]

    邱宇, 欧阳敏, 胡斌, 杨文博, 盖永浩, 邓聪, 张文祥 2023 吉林大学学报(信息科学版) 41 952

    Qiu Y, Ouyang M, Hu B, Yang W B, Gai Y H, Deng C, Zhang W X 2023 J. f Jilin Univ. (Inf. Sci. Ed. ) 41 952

    [25]

    Thompson G E, Wood G C 1983 Academic Press 23 269

  • [1] Shumin Yang, xin Li, Jianjun Gu, Yunkai Qi. Conductive behavior and mechanism of carbon rods during the anodic oxidation preparation of porous anodic alumina. Acta Physica Sinica, doi: 10.7498/aps.75.20251029
    [2] Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu. Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films. Acta Physica Sinica, doi: 10.7498/aps.73.20240838
    [3] Zhang Xing-Yu. Effects of current density on fracture behaviors for micron-sized crystalline silicon electrodes. Acta Physica Sinica, doi: 10.7498/aps.69.20200915
    [4] Yang Shu-Min, Han Wei, Gu Jian-Jun, Li Hai-Tao, Qi Yun-Kai. Preparation and study of anodic alumina thin films with rainbow rings. Acta Physica Sinica, doi: 10.7498/aps.64.076102
    [5] Chen Li-Cheng, Zhang Dong-Xian, Zhang Hai-Jun, Wang Xu-Long-Qi. Color tuning based on micro-nano structure and metal nanolayer. Acta Physica Sinica, doi: 10.7498/aps.64.038102
    [6] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, doi: 10.7498/aps.63.233104
    [7] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, doi: 10.7498/aps.63.198802
    [8] Li Guo-Dong, Wang Qian, Deng Bao-Xia, Zhang Ya-Jing. Origin of nanopore alumina film photoluminescence: three kinds of defect centers. Acta Physica Sinica, doi: 10.7498/aps.63.247802
    [9] Wang Xu-Long-Qi, Zhang Dong-Xian, Zhang Hai-Jun. A method of color modulation based on porous alumina and atomic layer deposition. Acta Physica Sinica, doi: 10.7498/aps.60.058104
    [10] Liao Guo-Jin, Yan Shao-Feng, Ba De-Chun. The blue luminescence of cerium doped aluminum oxide thin film. Acta Physica Sinica, doi: 10.7498/aps.57.7327
    [11] Huang Li-Qing, Pan Hua-Qiang, Wang Jun, Tong Hui-Min, Zhu Ke, Ren Guan-Xu, Wang Yong-Chang. Spontaneous formation of ordered Sn nanodot array on porous anodic alumina membrane. Acta Physica Sinica, doi: 10.7498/aps.56.6712
    [12] Liu Long-Ping, Zhao Zhen-Jie, Huang Can-Xing, Wu Zhi-Ming, Yang Xie-Long. Analysis of current-density distribution and giant magnetoimpedance effect in composite wires. Acta Physica Sinica, doi: 10.7498/aps.55.2014
    [13] Wu Han-Hua, Wang Jian-Bo, Long Bei-Yu, Lü Xian-Yi, Long Bei-Hong, Jin Zeng-Sun, Bai Yi-Zhen, Bi Dong-Mei. Effect of current density on physical and chemical properties of microarc oxidation coatings of aluminium alloy. Acta Physica Sinica, doi: 10.7498/aps.54.5743
    [14] Wang Cheng-Wei, Wang Jian, Li Yan, Liu Wei-Min, Xu Tao, Sun Xiao-Wei, Li Hu-Lin. Determination of the optical constants of porous anodic aluminum oxide films. Acta Physica Sinica, doi: 10.7498/aps.54.439
    [15] Li Yan, Wang Cheng-Wei, Tian Jun, Liu Wei-Min, Chen Miao, Li Hu-Lin. Optical properties of ordered Co/AAO nano-array composite structure. Acta Physica Sinica, doi: 10.7498/aps.53.1594
    [16] Ma Chun-Lan. The fabrication of high-quality periodic porous alumina templates. Acta Physica Sinica, doi: 10.7498/aps.53.1952
    [17] Wu Shan. . Acta Physica Sinica, doi: 10.7498/aps.44.1003
    [18] CHENG HUAN-SHENG, YAO XIAO-WEI, YANG FU-JIA. STUDIES OF INTERFACE ATOMIC STRUCTURE OF Al2O3/Al(100) BY MeV ION SCATTERING AND CHANNELING. Acta Physica Sinica, doi: 10.7498/aps.42.1110
    [19] Cheng Huan-sheng; Yao Xiao-wei; Yang fu-jia. STUDIES OF INTERFACE ATOMIC STRUCTURE OF Al_2_O_3_/AI(100) BY MeV ION SCATTERING AND CHANNELING STUDIES OF INTERFACE ATOMIC STRUCTURE OF AL_2_O_3_/AI (100) BY MeV ION SCATTERING AND CHANNELING. Acta Physica Sinica, doi: 10.7498/aps.40.1110
    [20] . Acta Physica Sinica, doi: 10.7498/aps.16.423
Metrics
  • Abstract views:  19
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2025
  • Accepted Date:  27 October 2025
  • Available Online:  13 December 2025
  • /

    返回文章
    返回
    Baidu
    map