搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2.79 μm Er, Cr:YSGG激光乙醇可饱和吸收体被动调Q脉冲特性

王胤泽 黄磊 张跃云 程庭清 王礼 江海河

引用本文:
Citation:

2.79 μm Er, Cr:YSGG激光乙醇可饱和吸收体被动调Q脉冲特性

王胤泽, 黄磊, 张跃云, 程庭清, 王礼, 江海河

Passive Q-switching pulse characteristics of 2.79 μm Er, Cr:YSGG laser with ethanol saturable absorber

WANG Yinze, HUANG Lei, ZHANG Yueyun, CHENG Tingqing, WANG Li, JIANG Haihe
cstr: 32037.14.aps.74.20250658
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 适用于2.79 μm波段的可饱和吸收材料一直是该波段被动调Q激光技术研究关注的重点. 乙醇作为一种流动性好、化学性质稳定、恢复性好、损伤阈值高的材料有成为良好可饱和吸收体的潜力. 本研究通过设计的微米级液体厚度调控装置控制乙醇溶液的厚度, 实现了2.79 μm Er, Cr:YSGG激光器被动调Q脉冲输出. 在液层厚度为45 μm, 重复频率为20 Hz时, 获得的多脉冲最大能量为11.64 mJ, 最窄单脉冲宽度为287.6 ns. 结果表明, 乙醇作为液相饱和吸收体在2.79 μm波段吸收暗区也具有良好的可饱和吸收特性, 为乙醇作为饱和吸收体的应用和其他羟基可饱和吸收体材料的研究提供了参考.
    The search for suitable saturable absorption materials for the 2.79-μm wavelength range has been a key focus in the development of passive Q -switched laser technology at this wavelength. High-purity ethanol serving as a saturable absorber operating within its intrinsic absorption darkening region is comprehensively investigated in this work. Ethanol stands out due to its high damage threshold, excellent fluidity, and long-term chemical stability, thereby making it a promising candidate for mid-infrared applications.Using a custom-designed micrometer-precision liquid cell, the ethanol layer thickness is continuously modulated from 14 μm to 55 μm (±1 μm accuracy), and passive Q -switching can be achieved without the need for an external modulator. The laser system adopts a 248-mm planar resonator, which includes a $\varPhi $3 mm × 70 mm Er, Cr:YSGG rod (Cr3+ 3% (atomic percentage), Er3+ 30% (atomic percentage)), and a flashlamp pumped at 250 μs and 20 Hz. Under these conditions, the output pulse characteristics are governed almost entirely by the ethanol thickness. When the pump energy is fixed at 12.86 J, reducing the layer thickness from 55 μm to 14 μm will shorten the pulse duration from 366.1 ns to 257.9 ns and increase the single-pulse energy from 1.25 mJ to 3.48 mJ. Optimal performance, characterized by 287.6 ns pulses and 11.64 mJ energy, is achieved at a thickness of 45 μm.While maintaining this optimal thickness, increasing the pump energy from 7.01 J to 10.75 J will further compress the pulses from 629.1 ns to 287.6 ns and increases the output energy from 0.52 mJ to 11.64 mJ, none of which do not cause optical damage, indicating a damage threshold exceeding 10 J/cm2. At pump energies exceeding 8.4 J, the ethanol undergoes re-bleaching within its ~20 μs recovery time, resulting in the formation of 2–5 equally spaced nanosecond sub-pulses (6–12 μs spacing, effective repetition ≈ 100 kHz) within a single pump envelope, which is an operating regime highly favorable for precision laser ablation.The beam quality at maximum output is measured to be $ M_x^2 =7.51 $ and $ M_y^2 =7.51 $. These results are supported by rate-equation modeling combined with temperature-dependent absorption cross-sections from the HITRAN database, establishing ethanol as an adjustable, high-damage-threshold liquid saturable absorber for compact mid-infrared Q -switched lasers, and emphasizing the broader potential of hydroxyl-containing liquids for next-generation medical and spectroscopic applications.
      通信作者: 江海河, hjiang@hfcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2024YFB3613302)资助的课题.
      Corresponding author: JIANG Haihe, hjiang@hfcas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2024YFB3613302).
    [1]

    Burikov S, Dolenko T, Patsaeva S, Starokurov Y, Yuzhakov V 2010 Mol. Phys. 108 2427Google Scholar

    [2]

    Wei C, Zhu X S, Norwood R A, Song F, Peyghambarian N 2013 Opt. Express 21 29488Google Scholar

    [3]

    Skorczakowski M, Swiderski J, Pichola W, Nyga P, Zajac A, Maciejewska M, Galecki L, Kasprzak J, Gross S, Heinrich A, Bragagna T 2010 Laser Phys. Lett. 7 498Google Scholar

    [4]

    Wang L, Wang J T, Yang J W, Wu X Y, Sun D L, Yin S T, Jiang H H, Wang J Y, Xu C Q 2013 Opt. Lett. 38 2150Google Scholar

    [5]

    Yang J W, Wang L, Wu X Y, Cheng T T, Jiang H H 2014 Opt. Express 22 15686Google Scholar

    [6]

    Huang L, Wang P, Wang Y, Cheng T, Wang L, Jiang H 2024 Photonics 11 432Google Scholar

    [7]

    Cui Q Z, Wei M G, Xiong Z D, et al. 2019 Infrared Phys. Technol. 98 256Google Scholar

    [8]

    Huang L, Wang Y Z, Zhang Y Y, Cheng T Q, Wang L, Jiang H H 2024 Opt. Laser Technol. 175 110743Google Scholar

    [9]

    Wang S W, Tang Y L, Yang J L, Zhong H Z, Fan D Y 2019 Laser Phys. 29 025101Google Scholar

    [10]

    Tang P H, Wu M, Wang Q K, Miao L L, Huang B, Liu J, Zhao C, Wen S 2016 IEEE Photonics Technol. Lett. 28 1573Google Scholar

    [11]

    Xiong Z D, Jiang L L, Cheng T Q, Jiang H H 2022 Infrared Phys. Technol. 122 104087Google Scholar

    [12]

    Li C, Liu J, Jiang S Z, Xu S C, Ma W W, Wang J Y, Xu X D, Su L B 2016 Opt. Mater. Express 6 1570Google Scholar

    [13]

    Qin Z P, Xie G Q, Ma J G, Yuan P, Qian L J 2018 Photonics Res. 6 1074Google Scholar

    [14]

    Vodopyanov K L, Shori R, Stafsudd O M 1998 Appl. Phys. Lett. 72 2211Google Scholar

    [15]

    Deàk J C, Rhea S T, Iwaki L K, Dlott D D 2000 J. Phys. Chem. A 104 4866Google Scholar

    [16]

    Flór M, Wilkins D M, De La Puente M, Laage D, Cassone G, Hassanali A, Roke S 2024 Science 386 eads4369Google Scholar

    [17]

    Vodop’yanov K L, Kulevskiǐ L, Pashinin P, Prokhorov A 1982 J. Exp. Theor. Phys. 55 1049

    [18]

    Vodop’yanov L 1990 J. Exp. Theor. Phys. 70 114

    [19]

    Shori R K, Walston A A, Stafsudd O M, Fried D, Walsh J T 2001 IEEE J. Sel. Top. Quantum Electron. 7 959Google Scholar

    [20]

    Dong J 2003 Opt. Commun. 226 337Google Scholar

    [21]

    Kucherov A N 2003 Dokl. Phys. 48 90Google Scholar

    [22]

    Vogel A, Venugopalan V 2003 Chem. Rev. 103 577Google Scholar

    [23]

    Xian T H, Zhan L, Gao L R, Zhang W Y, Zhang W C 2019 Opt. Lett. 44 863Google Scholar

    [24]

    戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春 2022 71 174202Google Scholar

    Dai C S, Dong Z P, Lin J Q, Yao P J, Xu L X, Gu C 2022 Acta Phys. Sin. 71 174202Google Scholar

  • 图 1  不同泵浦功率下, 光子数密度随时间变化仿真结果

    Fig. 1.  Simulation results of photon number density changing with time under different pump power.

    图 2  Er, Cr:YSGG被动调Q激光实验装置图

    Fig. 2.  Schematic diagram of a passively Q -switched Er, Cr:YSGG laser.

    图 3  微米级液体厚度调控装置实物图

    Fig. 3.  Photograph of the micron-scale liquid thickness control device.

    图 4  乙醇吸收光谱

    Fig. 4.  Absorption spectrum of ethanol.

    图 5  泵浦能量12.86 J、重复频率20 Hz时静态输出脉冲波形图

    Fig. 5.  Static output pulse waveform at a pump energy of 12.86 J and a repetition rate of 20 Hz.

    图 6  输出能量和脉冲宽度随溶液厚度的变化

    Fig. 6.  Output energy and pulse duration as a function of thickness of the ethanol.

    图 7  乙醇溶液厚度14 μm、泵浦能量12.86 J、重复频率20 Hz时调Q输出脉冲波形图

    Fig. 7.  Pulse waveform of ethanol Q -switched output with ethanol thickness of 14 μm, pump energy of 12.86 J, and repetition rate of 20 Hz.

    图 8  输出能量和脉冲宽度随泵浦能量的变化

    Fig. 8.  Output energy and pulse duration as a function of pump energy.

    图 9  输出激光光斑和光束质量

    Fig. 9.  Beam profile and beam quality of the laser.

    图 10  不同泵浦能量下的脉冲波形图

    Fig. 10.  Pulse waveforms under different pump energies.

    Baidu
  • [1]

    Burikov S, Dolenko T, Patsaeva S, Starokurov Y, Yuzhakov V 2010 Mol. Phys. 108 2427Google Scholar

    [2]

    Wei C, Zhu X S, Norwood R A, Song F, Peyghambarian N 2013 Opt. Express 21 29488Google Scholar

    [3]

    Skorczakowski M, Swiderski J, Pichola W, Nyga P, Zajac A, Maciejewska M, Galecki L, Kasprzak J, Gross S, Heinrich A, Bragagna T 2010 Laser Phys. Lett. 7 498Google Scholar

    [4]

    Wang L, Wang J T, Yang J W, Wu X Y, Sun D L, Yin S T, Jiang H H, Wang J Y, Xu C Q 2013 Opt. Lett. 38 2150Google Scholar

    [5]

    Yang J W, Wang L, Wu X Y, Cheng T T, Jiang H H 2014 Opt. Express 22 15686Google Scholar

    [6]

    Huang L, Wang P, Wang Y, Cheng T, Wang L, Jiang H 2024 Photonics 11 432Google Scholar

    [7]

    Cui Q Z, Wei M G, Xiong Z D, et al. 2019 Infrared Phys. Technol. 98 256Google Scholar

    [8]

    Huang L, Wang Y Z, Zhang Y Y, Cheng T Q, Wang L, Jiang H H 2024 Opt. Laser Technol. 175 110743Google Scholar

    [9]

    Wang S W, Tang Y L, Yang J L, Zhong H Z, Fan D Y 2019 Laser Phys. 29 025101Google Scholar

    [10]

    Tang P H, Wu M, Wang Q K, Miao L L, Huang B, Liu J, Zhao C, Wen S 2016 IEEE Photonics Technol. Lett. 28 1573Google Scholar

    [11]

    Xiong Z D, Jiang L L, Cheng T Q, Jiang H H 2022 Infrared Phys. Technol. 122 104087Google Scholar

    [12]

    Li C, Liu J, Jiang S Z, Xu S C, Ma W W, Wang J Y, Xu X D, Su L B 2016 Opt. Mater. Express 6 1570Google Scholar

    [13]

    Qin Z P, Xie G Q, Ma J G, Yuan P, Qian L J 2018 Photonics Res. 6 1074Google Scholar

    [14]

    Vodopyanov K L, Shori R, Stafsudd O M 1998 Appl. Phys. Lett. 72 2211Google Scholar

    [15]

    Deàk J C, Rhea S T, Iwaki L K, Dlott D D 2000 J. Phys. Chem. A 104 4866Google Scholar

    [16]

    Flór M, Wilkins D M, De La Puente M, Laage D, Cassone G, Hassanali A, Roke S 2024 Science 386 eads4369Google Scholar

    [17]

    Vodop’yanov K L, Kulevskiǐ L, Pashinin P, Prokhorov A 1982 J. Exp. Theor. Phys. 55 1049

    [18]

    Vodop’yanov L 1990 J. Exp. Theor. Phys. 70 114

    [19]

    Shori R K, Walston A A, Stafsudd O M, Fried D, Walsh J T 2001 IEEE J. Sel. Top. Quantum Electron. 7 959Google Scholar

    [20]

    Dong J 2003 Opt. Commun. 226 337Google Scholar

    [21]

    Kucherov A N 2003 Dokl. Phys. 48 90Google Scholar

    [22]

    Vogel A, Venugopalan V 2003 Chem. Rev. 103 577Google Scholar

    [23]

    Xian T H, Zhan L, Gao L R, Zhang W Y, Zhang W C 2019 Opt. Lett. 44 863Google Scholar

    [24]

    戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春 2022 71 174202Google Scholar

    Dai C S, Dong Z P, Lin J Q, Yao P J, Xu L X, Gu C 2022 Acta Phys. Sin. 71 174202Google Scholar

  • [1] 连天虹, 纪馨雅, 邢俊红, 刘芸, 焦明星. 种子注入螺旋手性控制的调Q涡旋固体激光器特性.  , 2025, 74(17): 174204. doi: 10.7498/aps.74.20250667
    [2] 王滔宁, 姜玲玲, 程庭清, 王礼, 江海河. 2.94 μm LiNbO3声光调Q Er:YAG激光输出脉冲特性.  , 2024, 73(4): 044205. doi: 10.7498/aps.73.20231616
    [3] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展.  , 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [4] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器.  , 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [5] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器.  , 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [6] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生.  , 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [8] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究.  , 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [9] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器.  , 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [10] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控.  , 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [11] 黄同德, 姜本学, 吴玉松, 李江, 石云, 刘文斌, 潘裕柏, 黄利萍, 郭景坤. Yb3+,Er3+:YAG透明陶瓷的制备和1.5 μm波段光谱性能研究.  , 2009, 58(2): 1298-1304. doi: 10.7498/aps.58.1298
    [12] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究.  , 2007, 56(5): 2663-2669. doi: 10.7498/aps.56.2663
    [13] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Er+O的GaN薄膜光学性质的研究.  , 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [14] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性.  , 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [15] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究.  , 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [16] 吴朝晖, 宋 峰, 刘淑静, 蔡 虹, 苏 静, 田建国, 张光寅. LD抽运Er3+,Yb3+共掺磷酸盐玻璃被动调Q激光器的理论分析和数值计算.  , 2006, 55(9): 4659-4664. doi: 10.7498/aps.55.4659
    [17] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器.  , 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [18] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究.  , 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [19] 尚连聚. 端面抽运固体激光器的腔模匹配分析.  , 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距.  , 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
计量
  • 文章访问数:  559
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-06-12
  • 上网日期:  2025-07-21

/

返回文章
返回
Baidu
map