Infrared focal plane array (IRFPA) detector, a key research focus in next-generation infrared detection technology, plays a crucial role in optoelectronic sensing. Here is the report on the integration and reliability of a PbSe-based IRFPA employing a row-column scanning readout architecture. This design features a surface passivation layer and through-hole structures to ensure robust electrical connectivity, thereby enhancing both stability and performance. The detector, with dimensions of 3.5 mm × 3.5 mm, a pixel size of 200 μm × 100 μm, and a pixel pitch of 200 μm, demonstrates structural integrity validated by electro-thermal simulations. At room temperature, the pixel-level and imaging assessments reveal an average detectivity value of 9.86×10
9 Jones and a responsivity value of 1.03 A/W, with a 100% effective pixel yield. Remarkably, the device retains high stability, exhibiting only a 3.6% performance decline after 150-day air exposure, which is attributed to the protective effect of the passivation layer. Infrared imaging under different light intensities shows pronounced contrast, confirming the sensitivity of the detector to illumination gradients. These results provide critical technical insights and a theoretical framework for advancing high-performance, stable PbSe-based IRFPA detectors.