搜索

x
中国物理学会期刊

Sin团簇/石墨烯(n ≤ 6)结构稳定性和储锂性能的第一性原理计算

First-principles study of structural stability and lithium storage property of Sin clusters (n ≤ 6) adsorbed on graphene

CSTR: 32037.14.aps.70.20210521
PDF
HTML
导出引用
  • 目前, 硅/碳复合材料是锂离子电池最有潜在应用前景的高容量负极材料之一, 硅与碳材料的界面状态是影响其电化学性能的重要因素. 本文在作为碳材料结构单元的石墨烯表面构建了Sin(n ≤ 6)团簇, 采用基于密度泛函理论(DFT)的第一性原理方法研究了Sin团簇/石墨烯(Sin/Gr)的几何构型、结构稳定性和电子性质. 结果表明, 当Si原子数n ≤ 4时, Sin团簇优先以平行于石墨烯的二维构型沉积在石墨烯表面, 当n ≥ 5时, Sin团簇优先以三维立体构型沉积在石墨烯表面. 随着n的增大, Sin团簇在石墨烯表面的热力学稳定性显著降低, 两者之间的界面结合减弱, 并且伴随着Sin团簇与石墨烯之间的电荷转移也越来越少. 同时还研究了Sin/Gr复合构型的储锂能力, Li原子主要存储在Sin团簇临近的石墨烯表面和Sin团簇周围, Sin团簇与石墨烯复合形成的协同作用增强了Li原子吸附的热力学稳定性. 当n ≤ 4时, 存储2个Li原子有利于提高xLi-Sin/Gr体系的热力学稳定性, 继续增加Li原子数x会导致稳定性降低; 当n ≥ 5时, 稳定性随着Li原子数x的增多而逐渐降低.

     

    Silicon/carbon composite is one of the most potential high-capacity anode materials for lithium-ion batteries. The interface state between silicon and carbon of silicon/carbon composite is an important factor affecting its electrochemical performance. In this paper, Sin (n ≤ 6) clusters with different numbers of Si atoms are constructed on graphene as a structural unit of carbon material. The geometric configuration, structure stability and electronic property of Sin clusters adsorbed on graphene (Sin/Gr) are studied by the first-principles method based on density functional theory (DFT). The results show that when the number of Si atoms n ≤ 4, the Sin clusters are preferentially adsorbed on graphene in a two-dimensional configuration parallel to graphene. When n ≥ 5, the Sin clusters are preferentially adsorbed on graphene in a three-dimensional configuration. With the increase of the number of Si atoms n, the thermodynamic stability of Sin clusters on graphene decreases significantly, the interface binding strength between Sin clusters and graphene decreases, and the charge transfer between Sin clusters and graphene becomes less. At the same time, the storage capacity of Li atoms in Sin/Gr complex is also studied. Li atoms are mainly stored on the graphene surface near Sin clusters and around Sin clusters. The complex synergistic effect of Sin clusters and graphene enhances the thermodynamic stability of Li adsorption. When n ≤ 4, storing two Li atoms is beneficial to improving the thermodynamic stability of xLi-Sin/Gr system, and the thermodynamic stability decreases with the increase of Li atom number. When n ≥ 5, the thermodynamic stability of xLi-Sin/Gr system decreases with the increase of Li atom number. In the xLi-Si5/Gr system, the C-C bond and Si-Si bond are mainly covalent bonds, while the Li-C bond and Li-Si bond are mainly ionic bonds with certain covalent properties.

     

    目录

    /

    返回文章
    返回
    Baidu
    map