搜索

x
中国物理学会期刊

复杂网络电输运性能与通信序列熵之间的关联

Correlation between the electrical transport performance and the communicability sequence entropy in complex networks

CSTR: 32037.14.aps.68.20190230
PDF
HTML
导出引用
  • 网络的电输运性能优化, 不仅有助于理解网络的结构与功能关系, 而且对于提升电气工程技术也有着非常重要的意义. 从信息的角度看待网络, 寻求影响网络电输运性能的信息结构测度是解决这一问题的有效途径. 最近的研究表明, 复杂网络的通信序列熵可以有效地量化网络的整体结构信息. 本文将探讨其表征网络电输运性能的能力, 其中主要研究了小世界网络、无标度网络、关联无标度网络、 社团网络以及IEEE57等节点网络的通信序列熵和电输运性能之间的关联特性. 研究结果表明, 对于以上这些网络, 它们的电输运性能是关于通信序列熵的单调递增函数, 与通信序列熵成正关联特性. 该规律的发现为设计高传输效率的电力网络提供了一个有效的策略, 即可以通过提高网络的通信序列熵来优化其电输运性能.

     

    Optimization of the network’s electrical transport properties not only conduces to understanding the relationship between structure and network function, but also can improve the electrical engineering technology. The effective way to solve this problem is to treat the network from the information viewpoint and seek the information structure measure which affects crucially the network electrical transport performance. Recent studies have shown that the communicability sequence entropy of complex networks can effectively quantify the global structural information of networks. Based on this measure, the difference between networks can be quantified effectively, and the connotation of communicability sequence entropy is explained. In this paper, we predict that the electrical transport performance of complex networks has a strong correlation with the communicability sequence entropy. For this reason, we mainly study the correlation characteristics of the electrical transport performance and communicability sequence entropy of small-world networks, scale-free networks, degree-correlated scale-free networks, community networks, and IEEE57 and other electrical node networks. The results show that the electrical transport performances of these networks are all a monotonically increasing function of communicability sequence entropy, namely, the communicability sequence entropy, and the electrical transport properties have a positive correlation. Specifically, in the process evolving from a regular network to a small-world network, the communicability sequence entropy and electrical transport performance of the network increase gradually. For scale-free networks, in the process of increasing degree distribution exponent, communicability sequence entropy and electrical transport performance of the network increase gradually. For degree-correlated scale-free networks, during the evolution from assortative to disassortative topology, communicability sequence entropy and electrical transport performance both decrease gradually. For networks with community structure, the communicability sequence entropy and electrical transport performance decrease with the increase of the number of communities. Finally, the correlation between communicability sequence entropy and electrical transport performance of two classical node power supply networks and corresponding randomization network models are also studied. The results show that as the order of d increases, both communicability sequence entropy and electrical transport performance decrease. And both are getting closer to the original network's communicability sequence entropy and electrical transport performance. The rule is beneficial to providing an effective strategy for designing a high transmission efficiency of the power network, that is, we can optimize the electrical transport performance by improving the network communicability sequence entropy.

     

    目录

    /

    返回文章
    返回
    Baidu
    map