搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

键合特征对金属玻璃弹性变形机制的影响

闫澳 吴桢舵 刘思楠 姚忠正 朱贺 兰司

引用本文:
Citation:

键合特征对金属玻璃弹性变形机制的影响

闫澳, 吴桢舵, 刘思楠, 姚忠正, 朱贺, 兰司

The Influence of Bonding Characteristics on the Elastic Deformation Mechanism of Metallic Glasses

Yan Ao, Wu Zhen-Duo, Liu Si-Nan, Yao Zhong-zheng, Zhu He, Lan Si
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 金属玻璃变形行为的起源被认为是局域结构的重排,但是变形过程中不同原子键和团簇类型带来的结构响应机制仍然不明。我们使用同步辐射高能X射线全散射技术结合对分布函数分析方法原位研究了金属-类金属键体系与金属-金属键体系的金属玻璃拉伸变形过程中的局域结构演变。结果表明,在拉伸弹性应变状态下,金属-金属键体系的金属玻璃的短程和中程有序结构堆积密度均变得更加的松散,且结构趋于无序化。在金属-类金属体系中,虽然短程有序结构的堆积密度在应变作用下整体结构趋于松散,但是局域原子键的协同重排使其短程有序结构有序度增加,并且延伸至中程序尺度。研究发现金属玻璃原子键的类型显著影响了原子间关联长度与局域结构有序度的变化,进而影响微观结构的非均匀性与变形行为。研究结果为揭示金属玻璃变形的微观结构起源提供了新的理解。
    The deformation of metallic glasses is generally attributed to the rearrangements of local structures; however, the structural response mechanisms induced by different atomic bond types and cluster motifs during deformation remain unclear. To establish the correlation mechanism between atomic bonding characteristics and local structural evolution during metallic glass deformation, we employed pair distribution function (PDF) analysis of in-situ synchrotron high-energy X-ray total scattering to investigate the local structural evolution of metallic glasses with Pd77.5Cu6Si16.5metal-metalloid (M-Met) and Zr59(Cu0.55Fe0.45)33Al8 metalmetal (M-M) bonding during tensile deformation. Under elastic tensile strain, M-M systems exhibit reduced packing density in both short-range order (SRO) and medium-range order (MRO), and this process is dominated by the medium-range ordered structure, with the overall structure tending to disordering. By contrast, although the overall packing density of SRO and MRO in M-Met systems tends to decrease under strain, cooperative rearrangement of local bonds increases the SRO ordering and this ordering extends to the MRO regime. In the late stage of deformation, its structure gradually tends to disorder, and this response process is dominated by MRO structures. It is found that the bond type significantly affects the changes in interatomic correlation length and local order, thereby modulating microstructural heterogeneity and deformation behavior. These results provide new insight into the microstructural origins of deformation behavior in metallic glasses.
  • [1]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [2]

    Lan S, Zhu L, Wu Z D, Gu L, Zhang Q H, Kong H H, Liu J Z, Song R Y, Liu S N, Sha G, Wang Y G, Liu Q, Liu W, Wang P Y, Liu C T, Ren Y, Wang X L 2021 Nat. Mater. 20 1347

    [3]

    Liu S N, Wang L F, Ge J, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42

    [4]

    Liu S N, Dong W X, Ren Z Q, Ge J C, Fu S, Wu Z D, Wu J, Lou Y, Zhang W T, Chen H C, Yin W, Ren Y, Neuefeind J, You Z S, Liu Y, Wang X L, Lan S 2023 J. Mater. Sci. Technol. 159 10

    [5]

    Pan J, Ivanov Yu P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559

    [6]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30

    [7]

    Wu Y, Song W L, Zhou J, Cao D, Wang H, Liu X J, Lv Z P 2017 Acta Phys. Sin. 66 176111 (in Chinese) [吴渊,宋温丽,周捷,曹迪,王辉,刘雄军,吕昭平2005 66 176111]

    [8]

    Lan S, Wu Z, Wei X, Zhou J, Lu Z, Neuefeind J, Wang X L 2018 Acta Mater. 149 108

    [9]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [10]

    Li B, Yan M, Wen J, Lou Y, Zhou X, Chen S, Lan S, Feng T 2025 Small 21 e09564

    [11]

    Tan L, Yao Z, Huang J, Lou Y, Zhao Y, Zhu X, Liu S, Zeng J, Zhu H, Lan S 2025 J. Mater. Chem. A 13 12065

    [12]

    H S Chen 1980 Rep. Prog. Phys. 43 353

    [13]

    Kamimura Y, Edagawa K, Takeuchi S 2013 Acta Mater. 61 294

    [14]

    Tong X, Wang G, Stachurski Z H, Bednarčík J, Mattern N, Zhai Q J, Eckert J 2016 Sci. Rep. 6 30876

    [15]

    Dmowski W, Egami T 2007 J. Mater. Res. 22 412

    [16]

    Bian X, Şopu D, Wang G, Sun B, Bednarčik J, Gammer C, Zhai Q, Eckert J 2020 NPG Asia Mater. 12 59

    [17]

    Bian X, Wang G, Wang Q, Sun B, Hussain I, Zhai Q, Mattern N, Bednarčík J, Eckert J 2017 Mater. Res. Lett. 5 284

    [18]

    Inoue A, Chen H S, Krause J T, Masumoto T, Hagiwara M 1983 J. Mater. Sci. 18 2743

    [19]

    Nandam S H, Adjaoud O, Schwaiger R, Ivanisenko Y, Chellali M R, Wang D, Albe K, Hahn H 2020 Acta Mater. 193 252

    [20]

    Zhou Y, Wang T 2024 J. Mater. Res. Technol. 30 256

    [21]

    Dong J, Peng H, Wang H, Tong Y, Wang Y, Dmowski W, Egami T, Sun B, Wang W, Bai H 2023 Nat. Phys. 19 1896

    [22]

    Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33

    [23]

    Im S, Wang Y, Zhao P, Yoo G H, Chen Z, Calderon G, Abbasi Gharacheh M, Zhu M, Licata O, Mazumder B, Muller D A, Park E S, Wang Y, Hwang J 2021 Phys. Rev. Mater. 5 115604

    [24]

    Shen J, Cornet A, Ronca A, Pineda E, Yang F, Garden J L, Moiroux G, Vaughan G, di Michiel M, Garbarino G, Westermeier F, Goujon C, Legendre M, Liu J, Cangialosi D, Ruta B 2025 Sci. Adv. 11 eadz7406

    [25]

    Luo S, Khong J C, Huang S, Yang G, Mi J 2024 Acta Mater. 272 119917

    [26]

    Qiu X, Thompson J W, Billinge S J L 2004 J. Appl. Crystallogr. 37 678

    [27]

    Dong W, Ge J, Ke Y, Ying H, Zhu L, He H, Liu S, Lu C, Lan S, Almer J, Ren Y, Wang X L 2020 J. Alloy. Compd. 819 153049

    [28]

    Lan S, Blodgett M, Kelton K F, Ma J L, Fan J, Wang X L 2016 Appl. Phys. Lett. 108 211907

    [29]

    Ryu C W, Egami T 2021 Phys. Rev. E 104 064109

    [30]

    Egami T, Billinge S J L 2003 Underneath the Bragg peaks: structural analysis of complex materials (Kiddington, Oxford, UK Boston: Pergamon)

    [31]

    Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104

    [32]

    Ma D, Stoica A D, Yang L, Wang X L, Lu Z P, Neuefeind J, Kramer M J, Richardson J W, Proffen Th 2007 Appl. Phys. Lett. 90 211908

    [33]

    Dimitrov D A, Röder H, Bishop A R 2001 Phys. Rev. B 64 014303

    [34]

    Miracle D B 2004 Nat. Mater. 3 697

    [35]

    Shakur Shahabi H, Scudino S, Kaban I, Stoica M, Rütt U, Kühn U, Eckert J 2015 Acta Mater. 95 30

    [36]

    Huang Y, Khong J C, Connolley T, Mi J 2014 Int. J. Plast. 60 87

    [37]

    Srolovitz D, Egami T, Vitek V 1981 Phys. Rev. B 24 6936

    [38]

    Hufnagel T C, Ott R T, Almer J 2006 Phys. Rev. B 73 064204

    [39]

    Ding J, Ma E, Asta M, Ritchie R O 2015 Sci. Rep. 5 17429

    [40]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502

    [41]

    Tong X, Wang G, Bednarčík J, Jia Y D, Hussain I, Yi J, Stachurski Z H, Zhai Q J 2018 Mater. Sci. Eng. A 721 8

    [42]

    Wang L, Zhao Y, Wang L, Nie Z, Wang B, Xue Y, Zhang H, Fu H, Brown D E, Ren Y 2018 Scr. Mater. 149 112

    [43]

    Feng S D, Chan K C, Zhao L, Pan S P, Qi L, Wang L M, Liu R P 2018 Mater. Des. 158 248

  • [1] 王寿成, 潘强强, 宁睿, 彭海龙. 软硬相序构金属玻璃中的剪切带行为.  , doi: 10.7498/aps.74.20250845
    [2] 王建峰, 史禄鑫, 费婷, 白延文, 胡丽娜. FeZrB基金属玻璃的强脆转变行为及其对玻璃形成能力的影响机制.  , doi: 10.7498/aps.74.20250889
    [3] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , doi: 10.7498/aps.71.20211304
    [4] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索.  , doi: 10.7498/aps.67.20172721
    [5] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究.  , doi: 10.7498/aps.67.20180992
    [6] 于海滨, 杨群. 超稳定玻璃.  , doi: 10.7498/aps.66.176108
    [7] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型.  , doi: 10.7498/aps.66.176102
    [8] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型.  , doi: 10.7498/aps.66.176404
    [9] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象.  , doi: 10.7498/aps.66.176403
    [10] 袁晨晨. 金属玻璃的键态特征与塑性起源.  , doi: 10.7498/aps.66.176402
    [11] 武振伟, 李茂枝, 徐莉梅, 汪卫华. 非晶中结构遗传性及描述.  , doi: 10.7498/aps.66.176405
    [12] 柳延辉. 非晶合金的高通量制备与表征.  , doi: 10.7498/aps.66.176106
    [13] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇.  , doi: 10.7498/aps.65.096402
    [14] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系.  , doi: 10.7498/aps.63.058101
    [15] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为.  , doi: 10.7498/aps.61.196202
    [16] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡.  , doi: 10.7498/aps.61.036402
    [17] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究.  , doi: 10.7498/aps.61.036201
    [18] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究.  , doi: 10.7498/aps.61.136401
    [19] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究.  , doi: 10.7498/aps.51.1559
    [20] 龙期威, 王桂琴. 金属原子键强度的电子结构分析.  , doi: 10.7498/aps.17.1-2
计量
  • 文章访问数:  47
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-06

/

返回文章
返回
Baidu
map