搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒光电离中的电子涡旋:机制、动力学与应用

张炳双 焦利光 刘爱华

引用本文:
Citation:

阿秒光电离中的电子涡旋:机制、动力学与应用

张炳双, 焦利光, 刘爱华

Electron Vortices in Attosecond Photoionization: Mechanisms,Dynamics and Applications

ZHANG Bingshuang, JIAO Liguang, LIU Aihua
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 近年来,随着阿秒脉冲与偏振整形技术的发展,原子和分子光电离产生的光电子动量分布中具有阿基米德螺旋特征涡旋结构引起了人们的广泛关注。本文综述了阿秒光电离中电子涡旋的产生机制、超快动力学行为及其应用前景。理论研究表明,电子涡旋源于不同磁量子数光电子波包之间的量子干涉,其旋臂数目与空间分布对激光脉冲的偏振、时间延迟、啁啾特性以及靶体系的轨道对称性高度敏感。实验上,通过结合偏振整形脉冲与高分辨率光电子成像技术,已成功观测并验证了多种涡旋结构。电子涡旋不仅在干涉测量、载波包络相位提取、电子位移与时间延迟测定等方面展现出重要应用价值,还可为分子轨道成像与量子态操控提供新途径。本文还展望了电子涡旋在强场电离、分子解离等领域的潜在研究方向与应用前景。
    In recent years, with the advancement of attosecond pulse generation and polarization-shaping techniques, vortex structures with Archimedean spiral features observed in photoelectron momentum distributions have attracted broad attention in the study of ultrafast electron dynamics in atoms and molecules. This paper provides a systematic review of the generation mechanisms, dynamical behavior, and application prospects of electron vortices in attosecond photoionization. Theoretical studies reveal that electron vortices originate from quantum interference between photoelectron wave packets with different magnetic quantum numbers. Their number of spiral arms and spatial distributions are highly sensitive to the laser pulse polarization, time delay, chirp, and the orbital symmetry of the target system. Experimentally, by combining polarization-shaped pulses with high-resolution photoelectron imaging techniques, a variety of vortex structures have been successfully observed and verified. Beyond their fundamental interest, electron vortices demonstrate significant application potential in interference metrology, carrier-envelope phase retrieval, electron displacement and time-delay measurements, and further open new avenues for molecular orbital imaging and quantum-state control. Finally, this paper outlines future research directions and potential applications of electron vortices in strong-field ionization, molecular dissociation, and related areas.
  • [1]

    Einstein A 1905 Ann. Phys. 322 132

    [2]

    Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267

    [3]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817

    [4]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schoeffler M, Muller H G, Doerner R, Keller U 2008 Nat. Phys. 4 565

    [5]

    Gallmann L, Cirelli C, Keller U 2012 Annu. Rev. Phys. Chem. 63 447

    [6]

    Calegari F, Sansone G, Stagira S, Vozzi C, Nisoli M 2016 J. Phys. B:At. Mol. Opt. Phys. 49 062001

    [7]

    Vrakking M J J 2014 Phys. Chem. Chem. Phys. 16 2775

    [8]

    Chang Z, Corkum P B, Leone S R 2016 J. Opt. Soc. Am. B 33 1081

    [9]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [10]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [11]

    Meng C, Lü Z, Wang X, Zhang D, Zhao Z, Yuan J 2022 Chin. Phys. Lett. 39 113701

    [12]

    Yang Q, Leng J, Wang Y H, Sun Y N, Du H B, Zhang D D, Song L L, He L H, Liu F C 2022 Chin. Phys. Lett. 39 023301

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [15]

    Larochelle S, Talebpour A, Chin S L 1998 J. Phys. B:At. Mol. Opt. Phys. 31 1201

    [16]

    Luo X, Ji X, Jiao L, Liu A, Liu X 2025 Chin. Phys. Lett. 42 070301

    [17]

    Li Y, Wu F, Liu F, Kang S, Li Z, Zhang K, Liu Y, Li K, Zhai C, Xu J, Wang P, Zhao Q, Yu B 2025 Chin. Phys. Lett. 42 053703

    [18]

    Li Y, Qin L, Liu A, Zhang K, Tang Q, Zhai C, Xu J, Chen S, Yu B, Chen J 2022 Chin. Phys. Lett. 39 093201

    [19]

    Luo X, Jiao L G, Liu A, Liu X 2024 Opt. Express 32 19825

    [20]

    Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B:At. Mol. Opt. Phys. 21 L31

    [21]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [22]

    Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [23]

    Qiao Y, Zhang Y, Zhou S, Chen P, Liu Y, Yang Y, Chen J 2025 Chin. Phys. Lett. 43 020401

    [24]

    Ma Y, Meng C S, Lyu Z H, Zhang Y, Zhang D W, Sun X, Wu H Z, Wang X W, Zhao Z X, Yuan J M 2025 Chin. Phys. Lett. 42 120303

    [25]

    Yu S, Li Z, Zhong S, Xie B, Teng H, Zhu J, Wei Z 2025 Chin. Phys. Lett. 42 100401

    [26]

    Chen J, Jiang W, Qiao Y, Yang Y, Chen J 2025 Chin. Phys. Lett. 42 013201

    [27]

    Qiao Y, Chen J, Zhou S, Chen J, Jiang S, Yang Y 2024 Chin. Phys. Lett. 41 014205

    [28]

    Wang L, Wang X, Xiao F, Wang J, Tao W, Zhang D, Zhao Z 2023 Chin. Phys. Lett. 40 113201

    [29]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781

    [30]

    Hu S X, Collins L A 2006 Phys. Rev. Lett. 96 073004

    [31]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443

    [32]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [33]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [34]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186

    [35]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506

    [36]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [37]

    Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, Zhao Z 2020 Chin. Phys. Lett. 37 023201

    [38]

    Yang Z, Cao W, Chen X, Zhang J, Mo Y, Xu H, Mi K, Zhang Q, Lan P, Lu P 2020 Opt. Lett. 45 567

    [39]

    Kerbstadt S, Eickhoff K, Bayer T, Wollenhaupt M 2019 Adv. Phys. X 4 1672583

    [40]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Doerner R, Muller H G, Buettiker M, Keller U 2008 Science 322 1525

    [41]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M, Smirnova O 2015 Nat. Phys. 11 503

    [42]

    Pfeiffer A N, Cirelli C, Smolarski M, Keller U 2013 Chem. Phys. 414 84

    [43]

    Wang X H, Ou X B, Gong X C 2025 Acta Phys. Sin. 74 243202(in Chinses)[王旭涵,欧显彬,宫晓 春2025 74 243202]

    [44]

    Sansone G, Poletto L, Nisoli M 2011 Nat. Photon. 5 656

    [45]

    Hernández-García C, Durfee C G, Hickstein D D, Popmintchev T, Meier A, Murnane M M, Kapteyn H C, Sola I J, Jaron-Becker A, Becker A 2016 Phys. Rev. A 93 043855

    [46]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [47]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61

    [48]

    Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765

    [49]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [50]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L'Huillier A 2011 Phys. Rev. Lett. 106 143002

    [51]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [52]

    Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L'Huillier A, Lindroth E, Dahlström J M 2019 Phys. Rev. Lett. 123 133201

    [53]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [54]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414

    [55]

    Milošević D B, Becker W, Kopold R 2000 Phys. Rev. A 61 063403

    [56]

    Long S, Becker W, McIver J K 1995 Phys. Rev. A 52 2262

    [57]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photon. 8 543

    [58]

    Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photon. 9 99

    [59]

    Ngoko Djiokap J M, Hu S X, Madsen L B, Manakov N L, Meremianin A V, Starace A F 2015 Phys. Rev. Lett. 115 113004

    [60]

    Scheeler M W, van Rees W M, Kedia H, Kleckner D, Irvine W T M 2017 Science 357 487

    [61]

    Harris M, Hill C, Vaughan J 1994 Opt. Commun. 106 161

    [62]

    Macek J H, Sternberg J B, Ovchinnikov S Y, Lee T G, Schultz D R 2009 Phys. Rev. Lett. 102 143201

    [63]

    Gregg P, Kristensen P, Ramachandran S 2015 Optica 2 267

    [64]

    Hernandez-Garcia C, Vieira J, Mendonca J T, Rego L, San Roman J, Plaja L, Ribic P R, Gauthier D, Picon A 2017 Photonics 4 28

    [65]

    Lloyd S M, Babiker M, Thirunavukkarasu G, Yuan J 2017 Rev. Mod. Phys. 89 035004

    [66]

    Bliokh K, Ivanov I, Guzzinati G, Clark L, Van Boxem R, Béché A, Juchtmans R, Alonso M, Schattschneider P, Nori F, Verbeeck J 2017 Phys. Rep. 690 1

    [67]

    Ovchinnikov S Y, Sternberg J B, Macek J H, Lee T G, Schultz D R 2010 Phys. Rev. Lett. 105 203005

    [68]

    Yuan K J, Chelkowski S, Bandrauk A D 2016 Phys. Rev. A 93 053425

    [69]

    de Broglie L 1970 Found. Phys. 1 5

    [70]

    Davisson C, Germer L H 1927 Phys. Rev. 30 705

    [71]

    Ramsey N F 1950 Phys. Rev. 78 695

    [72]

    Noordam L D, Duncan D I, Gallagher T F 1992 Phys. Rev. A 45 4734

    [73]

    Strehle M, Weichmann U, Gerber G 1998 Phys. Rev. A 58 450

    [74]

    Wollenhaupt M, Assion A, Liese D, Sarpe-Tudoran C, Baumert T, Zamith S, Bouchene M A, Girard B, Flettner A, Weichmann U, Gerber G 2002 Phys. Rev. Lett. 89 173001

    [75]

    Eickhoff K, Köhnke D, Feld L, Englert L, Bayer T, Wollenhaupt M 2020 New J. Phys. 22 123015

    [76]

    Pengel D, Kerbstadt S, Englert L, Bayer T, Wollenhaupt M 2017 Phys. Rev. A 96 043426

    [77]

    Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003

    [78]

    Kerbstadt S, Eickhoff K, Bayer T, Wollenhaupt M 2019 Nat. Commun. 10 658

    [79]

    Eickhoff K, Englert L, Bayer T, Wollenhaupt M 2021 Front. in Phys. 9 675258

    [80]

    Ngoko Djiokap J M, Meremianin A V, Manakov N L, Hu S X, Madsen L B, Starace A F 2016 Phys. Rev. A 94 013408

    [81]

    Yuan K J, Lu H, Bandrauk A D 2017 J. Phys. B:At. Mol. Opt. Phys. 50 124004

    [82]

    Zhen Q, Zhang H D, Zhang S Q, Ji L, Han T, Liu X S 2020 Chem. Phys. Lett. 738 136885

    [83]

    Zhen Q, Zhang S Q, Yang Z J, Liu X S 2021 EPL 133 33001

    [84]

    Zhen Q, Chen J H, Zhang S Q, Yang Z J, Liu X S 2021 Chin. Phys. B 30 024203

    [85]

    Guo J, Zhang S Q, Zhang J, Zhou S P, Guan P F 2021 Laser Phys. 31 065301

    [86]

    Wang Z, Zhen Q, Sun Y, Chen J H, Liu X S 2021 Commun. Theor. Phys. 74 015501

    [87]

    Lei Z X, Yan S J, Hao X Y, Ma P, Zhou S P, Guo J 2023 Commun. Theor. Phys. 75 065501

    [88]

    Ben S, Chen S, Bi C R, Chen J, Liu X S 2020 Opt. Express 28 29442

    [89]

    Djiokap J M N, Meremianin A V, Manakov N L, Hu S X, Madsen L B, Starace A F 2017 Phys. Rev. A 96 013405

    [90]

    Djiokap J M N, Starace A F 2017 J. Opt. 19 124003

    [91]

    Ngoko Djiokap J M, Meremianin A V, Manakov N L 2021 Phys. Rev. A 103 023103

    [92]

    Zhang B, Liu X, Zhu F, Jiao L, Liu A 2024 Commun. Theor. Phys. 76 015502

    [93]

    Strandquist N J, Ngoko Djiokap J M 2022 Phys. Rev. A 106 043110

    [94]

    Yusoff M A H B M, Ngoko Djiokap J M 2024 Phys. Rev. A 109 023107

    [95]

    Pedersen L, Ngoko Djiokap J M 2024 Phys. Rev. A 109 033114

    [96]

    Wang R, Zhang Q, Qian Y 2025 Phys. Rev. A 111 013106

    [97]

    Ngoko Djiokap J M, Meremianin A V, Manakov N L, Madsen L B, Hu S X, Starace A F 2018 Phys. Rev. A 98 063407

    [98]

    Ngoko Djiokap J M, Starace A F 2021 Phys. Rev. A 103 053110

    [99]

    Yang H, Liu X, Zhu F, Jiao L, Liu A 2024 Chin. Phys. B 33 013303

    [100]

    Bayer T, Wollenhaupt M 2022 Front. in Chem. 10 899461

    [101]

    Wollenhaupt M, Lux C, Krug M, Baumert T 2013 ChemPhysChem 14 1341

    [102]

    Bayer T, Philipp C, Eickhoff K, Wollenhaupt M 2020 Phys. Rev. A 102 013104

    [103]

    Eickhoff K, Feld L, Köhnke D, Bayer T, Wollenhaupt M 2021 Phys. Rev. A 104 052805

    [104]

    Eickhoff K, Feld L, Köhnke D, Englert L, Bayer T, Wollenhaupt M 2021 J. Phys. B:At. Mol. Opt. Phys. 54 164002

    [105]

    Köhnke D, Bayer T, Wollenhaupt M 2024 Phys. Rev. A 110 053109

    [106]

    Li M, Zhang G, Kong X, Wang T, Ding X, Yao J 2018 Opt. Express 26 878

    [107]

    Kong X, Zhang G, Li M, Wang T, Ding X, Yao J 2018 J. Opt. Soc. Am. B 35 2163

    [108]

    Li M, Zhang G, Ding X, Yao J 2019 IEEE Photon. J 11 1

    [109]

    Li M, Zhang G Z, Ding X, Yao J Q 2019 Chin. Phys. Lett. 36 063201

    [110]

    Qin Y N, Li M, Feng Y, Luo S, Zhou Y, Lu P 2021 Front. Phys. 16 32502

    [111]

    Xiao X R, Wang M X, Liang H, Gong Q, Peng L Y 2019 Phys. Rev. Lett. 122 053201

    [112]

    Fulton E L, Ngoko Djiokap J M 2024 Phys. Rev. A 110 063105

    [113]

    Köhnke D, Bayer T, Wollenhaupt M 2024 Phys. Rev. A 110 063111

    [114]

    Barth I, Smirnova O 2011 Phys. Rev. A 84 063415

    [115]

    Wang R, Zhang Q, Ran C, Cao W, Lu P 2020 Opt. Lett. 45 1383

    [116]

    Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H, Zhao S F 2021 Opt. Express 29 33245

    [117]

    Armstrong G S J, Clarke D D A, Benda J, Wragg J, Brown A C, van der Hart H W 2021 Phys. Rev. A 103 053123

    [118]

    Han M, Ge P, Liu M M, Gong Q, Liu Y 2019 Phys. Rev. A 99 023404

    [119]

    Milošević D B 2016 Phys. Rev. A 93 051402

    [120]

    Hu Y, Ma Q, Liu K, Tian Y, Li M, Zhou Y, Lu P 2023 Phys. Rev. A 107 033108

    [121]

    Wang R R, Ma M Y, Wen L C, Guan Z, Yang Z Q, Jiao Z H, Wang G L, Zhao S F 2023 J. Opt. Soc. Am. B 40 1749

    [122]

    Ambalampitiya H B, Ngoko Djiokap J M 2024 Commun. Phys. 7 359

    [123]

    Shu C C, Guo Y, Yuan K J, Dong D, Bandrauk A D 2020 Opt. Lett. 45 960

    [124]

    Li Z L, Li Y J, Xie B S 2017 Phys. Rev. D 96 076010

    [125]

    Li Z L, Xie B S, Li Y J 2018 J. Phys. B:At. Mol. Opt. Phys. 52 025601

    [126]

    Geng L, Cajiao Vélez F, Kamiński J Z, Peng L Y, Krajewska K 2020 Phys. Rev. A 102 043117

    [127]

    Cajiao Vélez F, Geng L, Kamiński J Z, Peng L Y, Krajewska K 2020 Phys. Rev. A 102 043102

    [128]

    Majczak M M, Velez F C, Kaminski J Z, Krajewska K 2022 Opt. Express 30 43330

    [129]

    Chen Z, He F 2020 Phys. Rev. A 102 033107

    [130]

    Chen Z, He P L, He F 2020 Phys. Rev. A 101 033406

    [131]

    Han M, Liang H, Rost J M, Rudenko A, Cocke C L, Thumm U, Peng L Y, Liu Y 2025 Phys. Rev. Res. 7 013295

  • [1] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针.  , doi: 10.7498/aps.74.20250546
    [2] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生.  , doi: 10.7498/aps.68.20190847
    [3] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展.  , doi: 10.7498/aps.65.223206
    [4] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲.  , doi: 10.7498/aps.61.123201
    [5] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲.  , doi: 10.7498/aps.60.043203
    [6] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲.  , doi: 10.7498/aps.60.123201
    [7] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲.  , doi: 10.7498/aps.60.033202
    [8] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化.  , doi: 10.7498/aps.59.8559
    [9] 洪伟毅, 杨振宇, 兰鹏飞, 张庆斌, 李钱光, 陆培祥. 非平行偏振双色场驱动产生脉宽稳定的单个宽谱阿秒脉冲.  , doi: 10.7498/aps.58.4914
    [10] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲.  , doi: 10.7498/aps.58.1579
    [11] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位.  , doi: 10.7498/aps.57.4083
    [12] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生.  , doi: 10.7498/aps.57.7848
    [13] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲.  , doi: 10.7498/aps.57.5853
    [14] 董晓刚, 盛政明, 陈 民, 张 杰. 强激光与固体靶作用产生的表面电子加速和辐射研究.  , doi: 10.7498/aps.57.7423
    [15] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应.  , doi: 10.7498/aps.56.2243
    [16] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理.  , doi: 10.7498/aps.56.1608
    [17] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出.  , doi: 10.7498/aps.55.2115
    [18] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频.  , doi: 10.7498/aps.54.149
    [19] 刘鲁宁, 寿 倩, 雷 亮, 林春梅, 赖天树, 文锦辉, 林位株. 半导体中相干控制光电流对光场的偏振依赖性.  , doi: 10.7498/aps.54.1863
    [20] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列.  , doi: 10.7498/aps.54.2638
计量
  • 文章访问数:  46
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回
Baidu
map