-
拓扑节线半金属ZrSiS因其独特的电子结构而在体相材料中展现出丰富的物理现象。然而,对其低维形式(如单层和双层)的光学与表面等离激元性质的研究尚不充分。基于第一性原理计算,本工作系统地研究了单层和双层 ZrSiS 的电子能带结构、光电导率、光学性质和表面等离子体激元极化激元(SPP)特性。计算结果表明,层状 ZrSiS 由于其拓扑节线能带而表现出独特的光电导特性,在红外区域显示出显著的带内响应,同时在可见光范围内显示出明显的带间响应。此外其光学性质表明,单层和双层结构都具有很高的光吸收率(显著超过石墨烯)以及从红外到可见光谱的可调反射/透射窗口。此外,我们发现单层和双层ZrSiS在表面等离激元特性上支持从红外到可见光范围的表面等离激元(单层:0.5 - 4 eV;双层:0.4 - 2.5 eV)。这些表面等离激元相较于体材料表现出更为出色的局域化特性。综上所述,层状 ZrSiS 在纳米光子学、高性能红外光电探测器以及可调谐等离子体器件的应用方面具有巨大潜力。Topological nodal-line semimetals have emerged as a fascinating class of materials due to their protected band crossings and unique electronic properties. Among them, ZrSiS stands out as a typical system with nodal-line and high carrier mobility. While its bulk properties have been extensively studied, the optical and plasmonic behaviors of its monolayer and bilayer ZrSiS remain largely unexplored. Understanding these low-dimensional forms is crucial for harnessing their potential in nanophotonics and optoelectronic devices. This work, based on first-principles calculations, systematically investigates the electronic band structure, optoelectronic conductivity, optical response, and surface plasmon polariton (SPP) characteristics of monolayer and bilayer ZrSiS. The results were compared with those of bulk materials and typical two-dimensional materials argentene to explore their advantages and disadvantages in all aspects and application prospects. Our results show that layered ZrSiS exhibits distinctive conductivity features arising from its topological nodal-line bands, displaying a significant intraband response in the infrared regime and interband response in the visible range. Analysis of the optical properties reveals that both mono/bilayer structures possess high absorption (significantly exceeding that of graphene) and tunable reflection/transmission windows from the infrared to visible spectrum. Furthermore, regarding plasmonic properties, we find that monolayer and bilayer ZrSiS support SPP in the infrared to visible range (monolayer: 0.5-4 eV; bilayer: 0.4-2.5 eV). These SPP are highly localized, with confinement ratios several times larger than those of bulk ZrSiS, while maintaining propagation lengths on the order of micrometers in the infrared regime. In conclusion, monolayer and bilayer ZrSiS combine tunable electronic structure, high optical absorption, and strongly confined surface plasmons, making them promising candidates for advanced nanophotonic and infrared optoelectronic applications. Their layer-dependent properties offer additional degrees of freedom for device design, paving the way for next-generation tunable plasmonic and photonic devices.
-
Keywords:
- surface plasmon polariton /
- mono/bilayer ZrSiS /
- optical properties /
- first-principles calculate
-
[1] NOVOSELOV K S, JIANG D, SCHEDIN F, T J Booth, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451
[2] ARMITAGE N P, MELE E J, VISHWANATH A 2018 Rev. Mod. Phys. 90 015001
[3] Huang H Q, Liu J P, Vanderbilt D, Duan W H. 2016 Phys. Rev. B 93 201114
[4] Weng H M, Dai X, Fang Z 2016 J. Phys.: Condens. Matter 28 303001
[5] Fang C, Chen Y G, Kee H Y, Fu L 2015 Phys. Rev. B 92, 081201
[6] Hussain G Rao X, Li N, Chu W J, Liu X G, Zhao X, Sun X F 2020 Phys. Lett. A 384 126938
[7] Lv B Q, Qian T, Ding H. 2021 Rev. Mod. Phys. 93 025002
[8] Neupane M, Belopolski I, Hosen M M, Sanchez D S, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F C, Hasan M Z, Durakiewicz T 2016 Phys. Rev. B 93 201104
[9] Xue S W, Wang M Y, Li Y , Zhang S Y, Jia X, Zhou J H, Shi Y G, Zhu X T, Yao Y G, Guo J 2021 Phys. Rev. Lett. 127 186802
[10] Wang X F, Pan X C, Gao M, Zhang Y, Li Z Q, Chen X H, Jia J F 2016 Adv. Electron. Mater. 2 1600228
[11] Topp A, Queiroz R, Grüneis A, Schmidt S, Schüller M, Hirai T, Ito T, Kitagawa T, Tokura Y, Ekkehardt W, Rosner M 2017 Phys. Rev. X 7 041073
[12] Ansari L, Monaghan S, McEvoy N, O'Brien A, Dwyer G, Horgan R R, McGuinness C P, Boyle S D, Nolan M, Dunleavy C, Murphy H, McCarthy E, Hubbard S M, Dubois R, O'Sullivan C, Falconer J, Kelly M J, Morris M A 2019 npj 2D Mater. Appl. 3 33
[13] Xu Q, Song Z, Nie S, Zhang C, Liu C, Wang Y, Chen X, Zhao L, Liu J, Dong X, Ma J, Feng D, Wang Z 2015 Phys. Rev. B 92 205310
[14] Sundararaman R, Letchworth-Weaver K, Schwarz K A, Pitzler M, Burnett K, Ernstorfer R S, Arouca E N, Bao J, Ramprakash S, Vasudevan S, Bogle S, Buber J, Eigenbrod C, Franz E, Ghosh S, Gunasekaran M, Hahn S, Han S, Hanson R, Hatzikiriakos S, Hong D, Jiang T, Kang S, Kim C, Kim J, Kim S, Kim Y, King S, Kong J, Kumar N, Kumar S, Lee H, Lee J, Lee S, Lee Y, Levine J, Li G, Li J, Liu H, Liu J, Liu S, Liu X, Luo Y, Mamonov A, Manoharan S, Martinez G, Martinez R, Mathur N, Meng F, Mohanraj J, Murugesan M, Nam S, Narayanan V, Nguyen T, Noh K, Oh S, Park H, Park J, Park S, Park Y, Pathak S, Pillai R, Pohl V, Prasad S, Prasanth S, Pu J, Qian D, Rajagopalan S, Ramachandran S, Ramakrishnan S, Ramanathan S, Rani S, Rathod V, Ravi S, Reddy A, Reddy P, Roh S, Rosenberg E, Sakthivel P, Samanta A, Santhosh M, Saravanan M, Sarkar A, Sarkar S, Saxena A, Saxena S, Schmidt M, Schneider T, Schwab M, Shan X, Sharma A, Sharma P, Sharma S, Shekhar C, Shen H, Shen J, Shen Z, Shi D, Shi J, Shi Y, Shin H, Shin J, Shin K, Shin S, Singh A, Singh G, Singh J, Singh K, Singh R, Singh S, Srinivasan K, Srinivasan S, Srivastava A, Srivastava P, Srivastava R, Subramanian S, Sudhakar C, Sundaram B, Suresh K, Swaminathan S, Swaroop S, Tang H, Tang J, Tang S, Thangaraj P, Thomas J, Thomas S, Tiwari A, Tiwari R, Tong L, Tong X, Torres M, Tummala R, Vadlamani R, Vallabhaneni S, Varma S, Venkatesan R, Venkataraman S, Venkateshwarlu K, Vijayakumar P, Vinod K, Wang C, Wang H, Wang J, Wang L, Wang M, Wang Q, Wang S, Wang X, Wang Y, Wang Z, Wei G, Wei H, Wei J, Wei L, Wei M, Wei Q, Wei S, Wei X, Wei Y, Wei Z, Wen C, Wen H, Wen J, Wen L, Wen M, Wen Q, Wen S, Wen X, Wen Y, Wen Z, Xiao D, Xiao H, Xiao J, Xiao L, Xiao M, Xiao Q, Xiao S, Xiao X, Xiao Y, Xiao Z, Xu C, Xu H, Xu J, Xu L, Xu M, Xu Q, Xu S, Xu X, Xu Y, Xu Z, Yang C, Yang H, Yang J, Yang L, Yang M, Yang Q, Yang S, Yang X, Yang Y, Yang Z, Ye C, Ye H, Ye J, Ye L, Ye M, Ye Q, Ye S, Ye X, Ye Y, Ye Z, Yi C, Yi H, Yi J, Yi L, Yi M, Yi Q, Yi S, Yi X, Yi Y, Yi Z, Yin C, Yin H, Yin J, Yin L, Yin M, Yin Q, Yin S, Yin X, Yin Y, Yin Z, Yoon C, Yoon H, Yoon J, Yoon L, Yoon M, Yoon Q, Yoon S, Yoon X, Yoon Y, Yoon Z, Zhang C, Zhang H, Zhang J, Zhang L, Zhang M, Zhang Q, Zhang S, Zhang X, Zhang Y, Zhang Z, Zhao C, Zhao H, Zhao J, Zhao L, Zhao M, Zhao Q, Zhao S, Zhao X, Zhao Y, Zhao Z, Zhou C, Zhou H, Zhou J, Zhou L, Zhou M, Zhou Q, Zhou S, Zhou X, Zhou Y, Zhou Z 2017 SoftwareX 6 278
[15] Sundararaman R, Arias T 2013 Phys. Rev. B 87 165122
[16] Fan H, Ma X, Wei L, Zhang Y, Li J, Wang Z, Liu X, Chen D 2025 Opt. Express 33 3361
[17] Jian C, Ma X, Zhang J, Li Y, Wang S, Zhao H, Chen L, Liu W 2022 Nanophotonics 11 531
[18] Zhang C X, Ma X C, Zhang J Q 2022 Acta. Phys. Sin. 71 227801(in Chinese) [张彩霞, 马向超, 张建奇 2020 71 227801]
[19] Sundararaman R, Christensen T, Ping Y, Zhang S, Liu H, Wang J, Chen X 2018 Phys. Rev. Mater. 4 074011
[20] Schoop L M, Ali M N, Straßer C, Park J, Sun Y, Yan B, Neupane M, Wieder B J, Denlinger J D, Liu C, Qian D, Chou F C, Ong N P, Lin H, Wang L, Hasan M Z 2016 Nat. Commun. 7 11696
[21] Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004
[22] Dawlaty J M, Shivaramana S, Strait J, Allen M J, Williams E D, Wei S H, Chen C J 2008 Appl. Phys. Lett. 93 133107
[23] Zhu Y, Xu H, Yu P, Li J, Wang Z, Liu X, Chen D 2021 Appl. Phys. Rev. 8 021305
[24] Linic S, Chavez S, Elias R J N M 2021 Nat. Mater. 20 632
[25] MAIER S A(translated by Zhang T, Wang Q L, Zhang X Y, Li C) 2014 Plasmonics: Fundamentals and Applications (NanJing: Southeast University Press)pp20 (in Chinese)[麦尔 S.A著 (张彤,王琦龙,张晓阳,李晨译) 2014 等离激元学基础与应用(南京:东南大学出版社)第20页]
计量
- 文章访问数: 26
- PDF下载量: 0
- 被引次数: 0








下载: