-
随着图像数据量的激增及信息安全需求的提升,传统单图像加密方法在多图像并行传输中面临安全性与效率瓶颈.本文提出一种基于无干涉编码孔径相关全息的多图像混沌压缩双重加密方法,构建了一个物理与数字协同的双重加密体系.首先利用无干涉编码孔径相关全息成像构建前端物理加密层,通过记录图像的点扩散全息图实现初步加密,具备良好的抗物理攻击能力.随后在数字加密层中采用分块离散余弦变换对全息图进行能量压缩与稀疏化,并结合混沌系统生成的密钥序列与压缩感知理论实现次级加密,从而同时提高安全强度与压缩效率.仿真与实验结果证实了其在密钥空间规模、密钥敏感性、抗统计分析能力和鲁棒性方面的有效性,同时在多图像压缩效率方面可平均降低约30%的数据量,体现出明显的性能优势,适用于监控、医学成像等场景中的图像数据安全传输与存储.
-
关键词:
- 多图像加密 /
- 无干涉编码孔径相关全息 /
- 压缩感知 /
- 混沌系统
To improve the security and efficiency of multi-image encryption, this paper proposes a hybrid encryption method that combines Interferenceless Coded Aperture Correlation Holography (I-COACH) with chaotic modulation and compressed sensing techniques. The method constructs a dual-layer encryption framework, integrating optical and digital processing to overcome the limitations of single-domain schemes.
In the optical layer, I-COACH is employed to encode multiple input images by recording their point spread holograms without interference, providing initial encryption and resistance against physical attacks. The resulting hologram is then processed using block-wise Discrete Cosine Transform (DCT) to achieve sparsity. Dual chaotic sequences perturb DCT coefficients to enhance key sensitivity and randomness. Finally, compressed sensing is applied to achieve secondary encryption while reducing the data volume by 30%, enabling efficient and secure storage or transmission. Experimental results demonstrate that the proposed method achieves an average Number of Pixels Change Rate (NPCR) of 99.44% and a Unified Average Changing Intensity (UACI) of 33.04% against differential attacks, with a ciphertext entropy of 7.9996 bit. Moreover, it exhibits excellent encryption performance in terms of key sensitivity, robustness, and resistance to statistical analysis. This method provides a practical solution for secure image application scenarios such as medical imaging and surveillance.-
Keywords:
- Multi-image encryption /
- Interferenceless Coded Aperture Correlation Holography /
- Compressed sensing /
- Chaotic systems
-
[1] Wang Y, Wong K W, Liao X F, Chen G R 2011 Appl. Soft Comput. 11 514
[2] Kaur M, Kumar V 2020 Arch. Comput. Method. E. 27 15
[3] SaberiKamarposhti M, Ghorbani A, Yadollahi M 2024 Chaos Soliton. Fract. 178 114361
[4] Patro K A K, Acharya B 2021 Nonlinear Dynam. 104 2759
[5] Zhou N R, Tong L J, Zou W P 2023 Signal Process. 211 109107
[6] Zhou N R, Hu L L, Huang Z W, Wang M M 2024 Expert Syst. Appl. 238 122052
[7] Sui L S, Zhou B, Ning X J, Tian A L 2016 Opt. Express 24 499
[8] Wang X G, Li M, Yu N N, Xi S X, Wang X L, Lang L Y 2019 Acta Phys. Sin. 68 240503 (in Chinese) [王雪光,李明,于娜娜,席思星,王晓雷,郎利影 2019 68 240503]
[9] Hazer A, Yıldırım R 2021 J. Opt. 23 113501
[10] Wang Y H, Wu Y X, Fang H, Zhang X, Su Y G 2024 J. Opt. 53 4997
[11] Fang G Q, Lin H, Wang S Y, Peng P, Fang Z Y 2025 Acta Phys. Sin. 74 064205 (in Chinese) [方国全,林瀚,王思越,彭璞,方哲宇 2025 74 064205]
[12] Refregier P, Javidi B 1995 Opt. Lett. 20 767
[13] Vijayakumar A, Rosen J 2017 Opt. Express 25 13883
[14] Rosen J, Anand V 2024 Photonics. 11 115
[15] Zhang M H, Wan Y H, Man T L, Zhang W X, Zhou H Q 2024 Opt. Laser. Eng. 173 107929
[16] Yu X L, Wang K W, Xiao J J, Li X F, Sun Y Q, Chen H 2022 Opt. Lett. 47 409
[17] Yang L, Yang J P, Huang T, Li J S, Zhang Q N, Di J L, Zhong L Y 2024 Opt. Laser Technol. 169 110096
[18] Yu X L, Chen H, Xiao J J, Sun Y Q, Li X F, Wang K W 2022 Opt. Commun. 510 127889
[19] Zhang W B, Zou Z H, Ren Y C, Sun X D, Yu Y X, Tsai C W, Zhang Z J 2024 Opt. Express 3 27444
[20] Liu H J, Wang X Y 2011 Opt. Commun. 284 3895
[21] Li Y P, Wang C H, Chen H 2017 Opt. Laser. Eng. 90 238
[22] Wei D Y, Jiang M J, Deng Y 2023 Expert Syst. Appl. 213 119074
[23] Chai X L, Gan Z H, Chen Y R, Zhang Y S 2017 Signal Process. 134 35
[24] Chai X L, Zheng X Y, Gan Z H, Han D J, Chen Y R 2018 Signal Process. 148 124
[25] Shi H, Wang L D 2019 Acta Phys. Sin. 68 200501 (in Chinese) [石航,王丽丹 2019 68 200501]
[26] Xu Q Y, Sun K H, He S B, Zhu C X 2020 Opt. Laser. Eng. 134 106178
[27] Qin Y, Man T L, Wan Y H, Wang X 2023 Laser Optoelectron. Prog. 60 0400001 (in Chinese) [秦怡,满天龙,万玉红,王兴 2023 激光与光电子学进展 60 0400001]
[28] Wang C, Song L 2023 Inf. Sci. 642 119166
[29] Wen H P, Yang L C, Bai C X, Lin Y T, Liu T Y, Chen L, He D J 2024 Sci. Rep. 14 8805
[30] Jia J W, Zhang Z, Zhou H Y, Chen X B 2025 Optics Precis. Eng. 33 624 (in Chinese) [贾静雯,张钊,周红艳,陈雪波 2025 光学精密工程 33 624]
[31] Eltoukhy M M, Alsubaei F S, Elnabawy Y M, Hosny K M 2025 Alex. Eng. J. 125 367
[32] Hu L L, Chen M X, Wang M M, Zhou N R 2024 Chaos Soliton. Fract. 188 115521
[33] Huang L L, Gao H 2024 IEEE Trans. Circuits Syst. I-Regul. Pap. 71 3726
[34] Zhou L L, Chen P Y, Tan F 2025 Phys. Scr. 100 025223
[35] Lan Y C, Wang C M 2025 IEEE Access 13 43316
[36] Acharya B, Sravan J V, Potnuru D J R, Patro K A K 2025 IEEE Access 13 62773
[37] Wei J J, Zhang M, Tong X J 2022 Entropy 24 784
[38] Hosny K M, Elnabawy Y M, Salama R A, Elshewey A M 2024 Sci. Rep. 14 30597
[39] Zhang Z Y, Mou J, Banerjee S, Cao Y H 2024 Chin. Phys. B 33 020503
[40] Xue L L, Ai C H, Ge Z H 2025 Phys. Scr. 100 035539
[41] Wang L Y, Cheng H 2019 Entropy 21 960
[42] Hénon M 1976 Commun. Math. Phys. 50 69
计量
- 文章访问数: 23
- PDF下载量: 1
- 被引次数: 0








下载: