搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒激光作用下金属靶烧蚀-等离子体演化-辐射的耦合模型

周颖 吴坚 孙浩 李京徽 李小璇 黄树志 何佳瑶 刘星雨 杭玉桦 裴翠祥 李兴文

引用本文:
Citation:

纳秒激光作用下金属靶烧蚀-等离子体演化-辐射的耦合模型

周颖, 吴坚, 孙浩, 李京徽, 李小璇, 黄树志, 何佳瑶, 刘星雨, 杭玉桦, 裴翠祥, 李兴文

An end-to-end model for ablation-plasma evolution-radiation in nanosecond laser-target interaction

ZHOU Ying, WU Jian, SUN Hao, LI Jinghui, LI Xiaoxuan, HUANG Shuzhi, HE Jiayao, LIU Xingyu, HANG Yuhua, PEI Cuixiang, LI Xingwen
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 纳秒激光与金属材料相互作用涉及多个复杂物理过程,构建能够统一描述各阶段的自洽模型是当前研究的重点。本文以纯铁为研究对象,建立了一个涵盖激光能量沉积、固液相变、气液界面动理学输运、等离子体膨胀电离、组分扩散、热/粘性输运与光谱辐射的多物理场耦合模型。采用隐式紧致差分与Mac-Cormack显式格式对纯铁烧蚀动力学进行分区数值求解。计算结果揭示了等离子体屏蔽效应的产生及其对蒸发过程的抑制作用;明确了早期蒸发产物以声速逃离努森层、蒸汽质量占总烧蚀质量的81.6%。研究再现了等离子体羽流从高温高电离态(Fe3+主导)向低温中性原子(Fe0主导)演化的全过程,以及光谱从“连续谱强、离子线主导”到“原子线凸显并出现自吸收”的动态转变。通过与实验测量光谱以及PrismSPECT、NIST LIBS程序计算结果的定量对比,验证了全链条自洽建模在预测等离子体辐射特性方面的必要性,为激光加工、光谱分析等应用提供了一种可靠的数值模拟工具。
    The interaction of nanosecond laser pulses with metallic materials involves multiple complex physical processes, and constructing a self-consistent model capable of uniformly describing all stages remains a significant challenge. This work establishes a multi-physics coupled model for pure iron, encompassing laser energy deposition, solid-liquid phase transition, gas-liquid interfacial kinetic transport, plasma expansion and ionization, and spectral radiation. The numerical solution employs a partitioned approach, utilizing an implicit compact difference scheme for the target region and a Mac-Cormack explicit scheme for the ambient atmosphere, to simulate the ablation dynamics.
    The simulations elucidate the emergence of plasma shielding and its inhibitory effect on the evaporation process. They confirm that the early-stage ablation products are primarily transported via a supersonic expansion mode, which accounts for 81.6% of the total ablated mass transfer. The model successfully captures the complete evolution of the plasma plume from a high-temperature, highly ionized state (dominated by Fe3+) to a low-temperature, neutral atomic state (dominated by Fe0). Based on this, spectral calculations demonstrate the dynamic evolution of radiative characteristics from an early stage featuring a “strong continuum background dominated by ion lines” to a later stage where “the continuum attenuates, atomic lines become prominent, and self-absorption appears”. The emergence of self-absorption proves the model’s capability to effectively capture the optical thickness effects arising from spatial inhomogeneity within the plasma.
    Through systematic comparison with experimentally measured spectra and calculated results from the PrismSPECT and NIST LIBS spectral programs, the model presented here achieved the highest comprehensive scores in quantitative evaluations across multiple channels. This validates the necessity and superiority of the full-chain self-consistent modeling approach over traditional methods relying on spatial averaging or the optically thin approximation, particularly in describing plasma inhomogeneity and radiation transport. It also provides a numerical simulation framework for applications such as laser processing parameter optimization, quantitative spectroscopic analysis, and the design of novel plasma light sources.
  • [1]

    Wu J, Qiu Y, Li X W, Yu H, Zhang Z, Qiu A C 2020 J. Phys. D: Appl. Phys. 53 023001

    [2]

    Liu J B, Zhang D H Y, Fu Y Y 2023 New J. Phys. 25 122001

    [3]

    Wu J, Zhou Y, Chen M, Li X 2025 J. Phys. D: Appl. Phys. 58 143004

    [4]

    Wen S B, Mao X L, Greif R, Russo R E 2007 J. Appl. Phys. 102 043103

    [5]

    Bleiner D, Chen Z Y, Autrique D, Bogaerts A 2006 J. Anal. At. Spectrom. 21 910

    [6]

    Vanraes P, Venugopalan S P, Bogaerts A 2021 Appl. Phys. Rev. 8 041305

    [7]

    Yin P Q, Xu B P, Liu Y H, Wang Y S, Zhao W, Tang J 2024 Acta Phys. Sin. 73 095202 (in Chinese) [尹培琪,许博坪,刘颖华,王屹山,赵卫,汤洁 2024 73 095202]

    [8]

    Zhang D-H-Y, Liu J-B, Fu Y-Y 2024 Acta Phys. Sin. 73 025201 (in Chinese) [张东荷雨,刘金宝,付洋洋2024 73 025201]

    [9]

    Shabanov S V, Gornushkin I B 2014 Spectrochim. Acta, Part B 100 147

    [10]

    Lu Q M, Mao S S, Mao X L, Russo R E 2008 J. Appl. Phys. 104 083301

    [11]

    Gaft M, Nagli L, Gornushkin I, Raichlin Y 2020 Spectrochim. Acta, Part B 173 105989

    [12]

    Anisimov S I, Luk'yanchuk B S 2002 Phys. Usp. 45 293

    [13]

    Knight C J 1979 Aiaa J 17 519

    [14]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273

    [15]

    Guthikonda N, Kameswari D P S L, Manikanta E, Shiva S S, Harsha S S, Ikkurthi V R, Kiran P P 2023 J. Phys. D: Appl. Phys. 56 305501

    [16]

    Pert G J 2009 J. Plasma Phys. 35 43

    [17]

    Al-Khateeb A, Doyle L A, El-Astal A H, Lamb M J, Lewis C L S, Martin G W, Morrow T, Pert G J, Riley D, Weaver I, Williamson T P 1999 Appl. Phys. A 69 S479

    [18]

    Hill M, Wagenaars E 2022 Photonics 9 937

    [19]

    Basko M M, Sasorov P V, Murakami M, Novikov V G, Grushin A S 2012 Plasma Phys. Controlled Fusion 54 055003

    [20]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334

    [21]

    MacFarlane J J, Golovkin I E, Woodruff P R, Kulkarni S K, Hall I M 2013 Simulation of plasma ionization and spectral properties with PrismSPECT p1-1

    [22]

    MacFarlane J J, Golovkin I E, Woodruff P R 2006 J. Quant. Spectrosc. Radiat. Transfer 99 381

    [23]

    MacFarlane J J, Golovkin I E, Wang P, Woodruff P R, Pereyra N A 2007 High Energy Density Phys. 3 181

    [24]

    Joshi T R, Bailly-Grandvaux M, Turner R E, Spielman R B, Garay J E, Beg F N 2023 Phys. Plasma 30 122109

    [25]

    Ralchenko Y, Kramida A 2020 Atoms 8 56

    [26]

    Veis P, Marín-Roldán A, Kristof J 2018 Plasma Sources Sci. Technol. 27 095001

    [27]

    Wang J, Zhang L, Wang S, Su M, Sun D, Han J, Xia G, Dong C, Min Q, Ma W, Dong L, Yin W, Xiao L, Jia S 2021 Plasma Sci. Technol 23 035001

    [28]

    Palya A, Ranjbar O A, Lin Z, Volkov A N 2019 Int. J. Heat Mass Transfer 132 1029

    [29]

    Gornushkin I, Shabanov S, Omenetto N, Winefordner J 2006 J. Appl. Phys. 100 073304

    [30]

    Zeifman M I, Garrison B J, Zhigilei L V 2002 J. Appl. Phys. 92 2181

    [31]

    Heltemes T A, Moses G A 2012 Comput. Phys. Commun. 183 2629

    [32]

    Faik S, Tauschwitz A, Iosilevskiy I 2018 Comput. Phys. Commun. 227 117

    [33]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Physics of Fluids 31 3059

    [34]

    Haxhimali T, Echeverria M, Najjar F, Tzeferacos P, Ali S J, Park H S, Eggert J, Huntington C, Morgan B, Ping Y, Rinderknecht H G, Saunders A M 2020 Shock Compression of Condensed Matter - 2019 2272 120006

    [35]

    Noble C, Anderson A, Barton N, Bramwell J, Capps A, Chang M, Chou J, Dawson D, Diana E, Dunn T, Faux D, Fisher A, Greene P, Heinz I, Kanarska Y, Khairallah S, Liu B, Margraf J, Nichols A, White J 2017 ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    [36]

    Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Comput. Phys. Commun. 302 109242

    [37]

    Min Q, Wang G D, He C W, He S Q, Lu H D, Liu X B, Wu Y H, Su M G, Dong C Z 2025 Acta Phys. Sin. 74 033201 (in Chinese) [敏琦,王国栋,何朝伟,何思奇,卢海东,刘兴邦,武艳红,苏茂根,董晨钟 2025 74 033201]

    [38]

    Min Q, Su M, Cao S, Sun D, O'Sullivan G, Dong C 2016 Opt. Lett. 41 5282

    [39]

    Bulgakova N M, Bulgakov A V, Babich L P 2004 Appl. Phys. A 79 1323

    [40]

    Anisimov S I 1968 Soviet Physics Jetp-Ussr 27 182

    [41]

    Nosrati Y, Tavassoli S H, Hassanimatin M M, Safi A 2020 Phys. Plasma 27 023301 11

    [42]

    Fairbanks D F, Wilke C R 2002 Industrial & Engineering Chemistry 42 471

    [43]

    Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769

    [44]

    Huang X, Guo R, Ge Y 2014 Chinese Journal of Engineering Mathematics 31 371

    [45]

    Zhou Y, Wu J, Shi M, Chen M, Li J, Guo X, Hang Y, Pei C, Li X 2025 Appl. Phys. Lett. 126 034103

  • [1] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真.  , doi: 10.7498/aps.73.20231056
    [2] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究.  , doi: 10.7498/aps.72.20230013
    [3] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究.  , doi: 10.7498/aps.70.20210193
    [4] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , doi: 10.7498/aps.66.134205
    [5] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究.  , doi: 10.7498/aps.65.197901
    [6] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究.  , doi: 10.7498/aps.65.055204
    [7] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟.  , doi: 10.7498/aps.64.145203
    [8] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证.  , doi: 10.7498/aps.63.107901
    [9] 宋天明, 杨家敏. 三维柱腔内辐射输运的一维模拟.  , doi: 10.7498/aps.62.015210
    [10] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究.  , doi: 10.7498/aps.62.035202
    [11] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟.  , doi: 10.7498/aps.62.195203
    [12] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究.  , doi: 10.7498/aps.62.045201
    [13] 杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊. 射频电感耦合夹层等离子体中的模式转换.  , doi: 10.7498/aps.61.195206
    [14] 李刚, 邓力, 黄则尧, 李树. 非定常辐射输运问题的蒙特卡罗自适应偏倚抽样.  , doi: 10.7498/aps.60.022401
    [15] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究.  , doi: 10.7498/aps.59.5382
    [16] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究.  , doi: 10.7498/aps.57.2314
    [17] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响.  , doi: 10.7498/aps.57.7912
    [18] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究.  , doi: 10.7498/aps.55.5892
    [19] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究.  , doi: 10.7498/aps.52.1297
    [20] 江少恩, 郑志坚, 成金秀, 孙可煦. 管靶X射线辐射输运初步研究Ⅰ简化模型数值模拟与分析.  , doi: 10.7498/aps.49.1507
计量
  • 文章访问数:  33
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-30

/

返回文章
返回
Baidu
map