搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于布洛赫振荡的非亚反冲6Li原子的动量转移

余石川 张亮 樊健 尹梦佳 邓书金 武海斌

引用本文:
Citation:

基于布洛赫振荡的非亚反冲6Li原子的动量转移

余石川, 张亮, 樊健, 尹梦佳, 邓书金, 武海斌

Momentum transfer of 6Li atoms without subrecoil temperature based on Bloch oscillations

YU Shichuan, ZHANG Liang, FAN Jian, YIN Mengjia, DENG Shujin, WU Haibin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 原子干涉仪可以实现反冲频率的高精度测量,对于确定精细结构常数至关重要。本文在6Li冷原子团中基于布洛赫振荡发展了一种大动量转移技术,通过将原子装载至高阱深的光晶格中并对布洛赫激光频率进行绝热啁啾,在远高于反冲温度的条件下实现了40倍反冲动量的大动量转移,在该动量下转移原子数目可达5 × 106。研究还发现,在高温条件下初速度与光晶格加速方向一致的原子更容易被加速。该大动量转移技术有望大幅度提高6Li原子反冲频率的测量精度,为后续在6Li原子干涉仪中实现精细结构常数的高精度标定提供重要参考。
    Atom interferometer enables high-precision measurement of recoil frequency, which is crucial for determining the fine structure constant. Large momentum transfer (LMT) based on Bloch oscillations in atom interferometers can significantly enhance the measurement precision of the recoil frequency. Typically, applying Bloch oscillations to an atomic ensemble requires the atoms to be cooled within the first Brillouin zone. However, deep cooling of lithium atoms is challenging, making it diffcult to directly apply Bloch oscillations. Therefore, this paper develops an LMT technique based on Bloch oscillations in a relatively high-temperature ensemble of 6Li atoms. By constructing a deep potential optical lattice, the high-temperature atoms can be effciently loaded into the lattice. Subsequently, the optical lattice is adiabatically chirped to suppress interband transitions of the atoms and enable atoms to accelerate with the lattice. Although the effciency of a single Bloch oscillation decreases under the tight-binding approximation, this method simultaneously relaxes the temperature requirements of the LMT technique. Consequently, we achieve a large momentum transfer of 40 recoil momenta at 80 μK (far above the recoil temperature), with the number of transferred atoms reaching up to 5 × 106. Subsequent analysis of the atomic momentum spectrum before and after the Bloch oscillations revealed that, due to Doppler broadening, the atomic momentum shows a continuous distribution between the initial momentum and the target momentum, which limits the momentum transfer effciency. It was found that for a fixed optical lattice depth and pulse duration, the momentum distribution of atoms participating in the Bloch oscillations is independent of the number of oscillations. Furthermore, atoms with initial velocities aligned with the acceleration direction of the optical lattice are more easily accelerated. This LMT technique is expected to substantially enhance the measurement precision of the 6Li atomic recoil frequency, providing an important reference for the subsequent high-precision calibration of the fine structure constant using 6Li atom interferometers.
  • [1]

    Liu W, Boshier M G, Dhawan S, Van Dyck O, Egan P, Fei X, Perdekamp M G, Hughes V, Janousch M, Jungmann K, et al. 1999 Phys. Rev. Lett. 82 711

    [2]

    Mohr P J, Newell D B, Taylor B N 2016 Rev. Mod. Phys. 88 035009

    [3]

    Dirac P A M 1928 Proc. R. Soc. Lond. A. 117 610

    [4]

    Uzan J P 2011 Living Rev. Relativ. 14 1

    [5]

    Khorev V N, Shifrin V, Shubin S A, Park P G 2010 In CPEM 2010.(IEEE), pp 314-315

    [6]

    Shields J, Dziuba R, Layer H 2002 IEEE Trans. Instrum. Meas. 38 249

    [7]

    Jeffery A, Elmquist R E, Shields J Q, Lee L H, Cage M E, Shields S H, F D R 1998 Metrologia 35 83

    [8]

    Van Dyck R S, Schwinberg P B, Dehmelt H G 1987 Phys. Rev. Lett. 59 26

    [9]

    Hanneke D, Fogwell S, Gabrielse G 2008 Phys. Rev. Lett. 100 120801

    [10]

    Aoyama T, Hayakawa M, Kinoshita T, Nio M 2012 Phys. Rev. Lett. 109 111807

    [11]

    Williams E, Jones G, Ye S, Liu R, Sasaki H, Olsen P, Phillips W, Layer H 1989 IEEE Trans. Instrum. Meas. 38 233

    [12]

    Battesti R, Cladé P, Guellati-Khélifa S, Schwob C, Grémaud B, Nez F, Julien L, Biraben F 2004 Phys. Rev. Lett. 92 253001

    [13]

    Cadoret M, de Mirandes E, Cladé P, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2008 Phys. Rev. Lett. 101 230801

    [14]

    Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. Lett. 96 033001

    [15]

    Cladé P, Nez F, Biraben F, Guellati-Khélifa S 2019 C. R. Physique. 20 77

    [16]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys. B 24 033101

    [17]

    Zheng X, Sun Y, Chen J J, Hu S M 2018 Acta Phys. Sin. 67 164203(in Chinses)[郑昕,孙羽,陈娇 娇,胡水明2018 67 164203]

    [18]

    Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113 023005

    [19]

    Rosi G, D'Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M, Brukner Č, Tino G M 2017 Nat. Commun. 8 15529

    [20]

    Mills I M, Mohr P J, Quinn T J, Taylor B N, Williams E R 2011 Phil. Trans. R. Soc. A. 369 3907

    [21]

    Weiss D S, Young B C, Chu S 1993 Phys. Rev. Lett. 70 2706

    [22]

    Taylor B N 1994 Metrologia 31 181

    [23]

    Wicht A, Hensley J M, Sarajlic E, Chu S 2002 Phys. Scr. 2002 82

    [24]

    McGuirk J M, Snadden M J, Kasevich M A 2000 Phys. Rev. Lett. 85 4498

    [25]

    Müller H, Chiow S w, Long Q, Herrmann S, Chu S 2008 Phys. Rev. Lett. 100 180405

    [26]

    Cladé P, Andia M, Guellati-Khélifa S 2017 Phys. Rev. A 95 063604

    [27]

    Morel L, Yao Z, Cladé P, Guellati-Khélifa S 2020 Nature 588 61

    [28]

    Rui Y, Zhang L, Li R, Liu X, Duan C, Liu P, Wu Y, Wu H 2023 Phys. Rev. Res. 5 023052

    [29]

    Cassella K, Copenhaver E, Estey B, Feng Y, Lai C, Müller H 2017 Phys. Rev. Lett. 118 233201

    [30]

    Grynberg G, Courtois J Y 1994 Europhys. Lett. 27 41

    [31]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408

    [32]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411

    [33]

    Gustavsson M, Haller E, Mark M J, Danzl J G, Rojas-Kopeinig G, Nägerl H C 2008 Phys. Rev. Lett. 100 080404

    [34]

    Roati G, de Mirandes E, Ferlaino F, Ott H, Modugno G, Inguscio M 2004 Phys. Rev. Lett. 92 230402

    [35]

    Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001 Phys. Rev. Lett. 87 140402

    [36]

    Choi D I, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [37]

    Berg-Sørensen K, Mølmer K 1998 Phys. Rev. A 58 1480

    [38]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B 35 3095

    [39]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002

    [40]

    Cladé P, de Mirandes E, Cadoret M, Guellati-Khélifa S, Schwob C, Nez F, Julien L, Biraben F 2006 Phys. Rev. A 74 052109

    [41]

    Wannier G H 1937 Phys. Rev. 52 191

    [42]

    Cohen-Tannoudji C, Dupont-Roe J, Grynberg G 1998(John Wiley&Sons, Ltd), pp 67-163

计量
  • 文章访问数:  202
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回
Baidu
map