-
实现对量子隧穿电阻的精确调控,是铁电隧道结技术迈向应用的核心瓶颈。本研究提出了一种基于界面功函数工程的策略,其核心在于利用铁电极化翻转,主动调控异质结界面的能带对齐,从而在势垒层中诱导出可逆的金属-绝缘体相变,实现对隧穿电阻的调控。以Al2Te3/In2Se3范德瓦尔斯异质结为研究对象,通过第一性原理计算证明,对界面功函数的策略性调控可在势垒层中诱导出可逆的金属-绝缘体转变,从而显著改变其隧穿电阻。非平衡输运模拟进一步显示,该结构实现了高达2.69×105%的隧穿电阻比值。研究结果不仅凸显了Al2Te3/In2Se3作为高性能铁电隧道结的潜力,也为在低维铁电存储器件中设计超高隧穿电阻效应确定了一种普适的设计策略。这项工作为开发多状态非易失性存储器提供了新的思路。In recent years, two-dimensional (2D) ferroelectric materials have garnered significant interest, distinguished by their ultrathin geometry, high stability, and switchable polarization states. Ferroelectric tunnel junctions (FTJs) constructed from 2D ferroelectric materials exhibit exceptionally high tunnel electroresistance (TER) ratios, establishing them as leading candidates for next-generation non-volatile memory and logic devices. However, advancing FTJ technology hinges on overcoming the critical challenge of precisely controlling quantum tunneling resistance. Therefore, this study proposes a strategy of interfacial work function engineering, which actively modulates the band alignment of a heterostructure via ferroelectric polarization switching to induce a reversible metal-insulator transition in the barrier layer and modulate TER. Using a van der Waals heterostructure composed of Al2Te3/In2Se3 as a model system, we demonstrate through first-principles calculations that the strategic manipulation of interfacial work functions can induce a reversible metal-insulator transition in the barrier, thereby drastically altering the tunneling conductance. Further analysis indicates that a work function mismatch between the two ferroelectric materials induces varying degrees of interfacial charge transfer, thereby triggering a metal-insulator transition in the van der Waals ferroelectric heterostructure as the external electric field is reversed. Non-equilibrium transport simulations reveal an unprecedented TER ratio of 2.69 × 105%. Our findings not only highlight Al2Te3/In2Se3 as a promising platform for high-performance FTJs but also establish a universal design strategy for engineering ultrahigh TER effects in low-dimensional ferroelectric memory devices. This work opens new avenues for developing energy-efficient, non-volatile memory with enhanced scalability and switching characteristics.
-
Keywords:
- two-dimensional ferroelectric heterostructure /
- band modulation /
- polarization /
- first-principles calculations
-
[1] Luo K-F, Ma Z, Sando D, Zhang Q, Valanoor N 2025 ACS Nano 19 6622
[2] Tsymbal E Y, Kohlstedt H 2006 Science 313 181
[3] Zheng N, Li J, Sun H, Zang Y, Jiao P, Shen C, Jiang X, Xia Y, Deng Y, Wu D, Pan X, Nie Y 2025 Sci. Adv. 11 eads0724
[4] Bai X, Zou D, Lei C, He Z, Liu Y 2025 Appl. Phys. Lett. 126 162902
[5] Berdan R, Marukame T, Ota K, Yamaguchi M, Saitoh M, Fujii S, Deguchi J, Nishi Y 2020 Nat. Electron. 3 259
[6] Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802
[7] Yu X, Zhang X, Ma L, Wang J 2024 Adv. Funct. Mater. 34 2409281
[8] Kim D J, Lu H, Ryu S, Bark C W, Eom C B, Tsymbal E Y, Gruverman A 2012 Nano Lett. 12 5697
[9] Li Y, Yang Y, Zhao H, Duan H, Yang C, Min T, Li T 2025 Nano Lett. 25 1680
[10] Junquera J, Ghosez P 2003 Nature 422 506
[11] Yang Q, Tao L, Zhang Y, Li M, Jiang Z, Tsymbal E Y, Alexandrov V 2019 Nano Lett. 19 7385
[12] Jia Y, Yang Q, Fang Y-W, Lu Y, Xie M, Wei J, Tian J, Zhang L, Yang R 2024 Nat. Commun. 15 693
[13] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357
[14] Qi J, Han H, Yang S, Kang L, Yin H, Zhao G 2024 Appl. Phys. Lett. 125 042903
[15] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956
[16] Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, Edmonds M T, Li S, Seidel J, Zhu Y, Liu J Z, Tang W-X, Fuhrer M S 2018 Sci. Adv. 4 eaar7720
[17] Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H-J, Park S, Yoo W J 2017 ACS Nano 11 1588
[18] Popov I, Seifert G, Tománek D 2012 Phys. Rev. Lett. 108 156802
[19] Liu Z, Hou P, Sun L, Tsymbal E Y, Jiang J, Yang Q 2023 npj Comput. Mater. 9 6
[20] Xie A, Hao H, Liu C-S, Zheng X, Zhang L, Zeng Z 2023 Phys. Rev. B 107 115427
[21] Li J-H, Cao S-G, Han J-N, Li Z-H, Zhang Z-H 2024 Acta Phys. Sin. 73 137102 (in Chinese) [李景辉, 曹胜果, 韩佳凝, 李占海, 张振华 2024 73 137102]
[22] Li Y-N, Xie Y-Q, Wang Y 2021 Acta Phys. Sin. 70 227701 (in Chinese) [李永宁, 谢逸群, 王音 2021 70 227701]
[23] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[25] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Grimme S 2006 J. Comput. Chem. 27 1787
[28] Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 074106
[29] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[31] Soni R, Petraru A, Meuffels P, Vavra O, Ziegler M, Kim S K, Jeong D S, Pertsev N A, Kohlstedt H 2014 Nat. Commun. 5 5414
[32] Chen Y, Guo J, Li M, Wang G, Yuan H, Chen H 2024 Surf. Interf. 51 104597
[33] Fu C-F, Sun J, Luo Q, Li X, Hu W, Yang J 2018 Nano Lett. 18 6312
[34] Fan A, Zhang Q, Yang Z, Li L, Li M, Zhang K, Gao J, Wu F, Wu M, Geng D, Hu W 2025 Sci. Adv. 11 eadx8192
[35] Meng P, Wu Y, Bian R, Pan E, Dong B, Zhao X, Chen J, Wu L, Sun Y, Fu Q, Liu Q, Shi D, Zhang Q, Zhang Y-W, Liu Z, Liu F 2022 Nat. Commun. 13 7696
[36] Ding J, Shao D-F, Li M, Wen L-W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601
[37] Lu H-L, Yang M, Xie Z-Y, Geng Y, Zhang Y, Wang P-F, Sun Q-Q, Ding S-J, Wei Zhang D 2014 Appl. Phys. Lett. 104 161602
[38] Fang Z, Solovyev I V, Terakura K 2000 Phys. Rev. Lett. 84 3169
计量
- 文章访问数: 28
- PDF下载量: 1
- 被引次数: 0








下载: