搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多参数入射条件下分子碰撞对适应系数的影响研究

胡宇辉 陈琦 张伟 江定武 李锦 乔晨亮

引用本文:
Citation:

多参数入射条件下分子碰撞对适应系数的影响研究

胡宇辉, 陈琦, 张伟, 江定武, 李锦, 乔晨亮

Effects of molecular collisions on accommodation coeffcients under multi-Parameter incident conditions

HU Yuhui, CHEN Qi, ZHANG Wei, JIANG Dingwu, LI Jin, QIAO Chenliang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 有效的气体-表面相互作用参数对准确预测气体在稀薄环境中的流动特性至关重要。然而微观分子碰撞模型中不同分子动力学模拟方法得到的适应系数差异很大。为了准确描述非平衡环境中分子碰撞与动量、能量适应的关系,本文采用分子动力学模拟研究了氩与铂表面的相互作用。通过单个散射(SS)和连续散射(CS)方法系统地讨论了气-气碰撞对适应系数的影响。比较了两种方法在不同表面形态、表面温度、入射气体分子速度等影响因素下的气体-表面相互作用特性。得到了适应系数对表面温度、入射速度等参数的依赖关系。通过分析两种模拟方法的差异,揭示了多参数入射条件下适应系数变化的物理机制,为建立更精准的气体-表面相互作用模型提供了重要基础和依据。
    In rarefied gas flows, accommodation coeffcients (ACs) serve as core parameters for gas-surface interactions and play a crucial role in the accuracy of mesoscopic model simulations. However, there exist significant discrepancies in the ACs obtained by different molecular dynamics simulation methods. To accurately characterize the momentum and energy accommodation properties of rarefied gases with solid surfaces under non-equilibrium conditions, this study systematically investigates the gas-surface interactions between argon molecules and platinum surfaces using molecular dynamics (MD) methods. By employing single scattering (SS) and continual scattering (CS) approaches, the influence of gas-gas collisions on tangential momentum accommodation coeffcients (TMAC), normal momentum accommodation coeffcients (NMAC), and energy accommodation coeffcients (EAC) is comparatively analyzed, along with the operational laws of parameters such as surface morphology, surface temperature, incident velocity, and mean free path (MFP). The results demonstrate that gas density exerts a dual effect on momentum and energy accommodation: at smaller MFP, the high gas density within the interaction region impedes the accommodation of subsequent incident molecules with the surface, resulting in lower ACs; at moderate MFP, gas-gas collisions promote accommodation by increasing the frequency of gas-surface collisions, thereby enhancing ACs. Within the MFP range of 2.0–60.0 nm, the deviation in ACs between the CS and SS methods ranges from -14.88% to 5.21%, validating the dual role of gas density. Furthermore, at larger MFP, the TMAC and NMAC obtained via the CS method exhibit different trends with increasing MFP across surfaces of varying morphologies. In contrast to gas density, increases in both surface temperature and incident velocity shorten the interaction time, leading to reduced ACs. Notably, the effect of temperature varies across surfaces with different morphologies: elevated temperatures on smooth surfaces enhance the thermal fluctuations of surface atoms, thereby increasing NMAC, while elevated temperatures on rough surfaces cause smoothing of rough structures, thus inhibiting accommodation. Under high-speed incident conditions, gas-gas collisions promote NMAC on smooth surfaces, inhibit both TMAC and NMAC on rough surfaces, and suppress EAC across all surfaces. Additionally, the ACs obtained via both the CS and SS methods decrease with increasing incident velocity across surfaces of different morphologies.
  • [1]

    Chen Y Y, Chen D X, Liang S Z, Dai Y G, Bai X, Song B, Zhang D Y, Chen H W, Feng L 2022 Adv.Intell.Syst. 4 2100116

    [2]

    Zang H F, Zhang Z Y, Huang Z T, Lu Y H, Wang P 2024 Sci.Adv. 10 eadk2265

    [3]

    Song B W, Wang C W, Fan S Y, Zhang L R, Zhang C C, Xiong W, Hu Y L, Chu J R, Wu D, Li J W 2024 Adv.Funct.Mater. 34 2305245

    [4]

    Li B, Li H J, Yao X Y, Zhu X F, Liu N K 2022 Appl.Surf.Sci. 584 152617

    [5]

    Maxwell J C 1997 Philos.Trans.R.Soc.Lond. 170 231

    [6]

    Rooholghdos S A, Roohi E 2014 Comput.Math.Appl. 67 2029

    [7]

    Burnett D 1935 Proc.Lond.Math.Soc. s2-39 385

    [8]

    Shavaliyev M 1993 J.Appl.Math.Mech. 57 573

    [9]

    Lord R G 1995 Phys.Fluids 7 1159

    [10]

    Cercignani C,, Lampis M 1971 Transp.Theory Stat.Phys. 1 101

    [11]

    Liang T F, Li Q, Ye W J 2018 J.Comput.Phys. 352 105

    [12]

    Yamamoto K 2001 RAREFIED GAS DYNAMICS:22nd International Symposium Sydney,Australia,July 9-14,2000 339

    [13]

    Park J H, Baek S W 2004 Int.J.Heat Mass Transf. 47 1313

    [14]

    Liang Z, Keblinski P 2014 Int.J.Heat Mass Transf. 78 161

    [15]

    Yamaguchi H, Matsuda Y, Niimi T 2017 Phys.Rev.E 96 013116

    [16]

    Yousefi-Nasab S, Safdari J, Karimi-Sabet J, hasan Mallah M 2021 Vacuum 183 109864

    [17]

    Agrawal A, Prabhu S V 2008 J.Vac.Sci.Technol.A 26 634

    [18]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2020 Micromachines 11

    [19]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A I, Skiff W M 1992 J.Am.Chem.Soc. 114 10024

    [20]

    C T Rettner 1998 IEEE Trans.Magn. 34 2387

    [21]

    Minton T K, Tagawa M, Nathanson G M 2004 J.Spacecr.Rockets 41 389

    [22]

    Tekasakul P, Bentz J A, Tompson R V, Loyalka S K 1996 J.Vac.Sci.Technol.A 14 2946

    [23]

    Jousten K 2002 J.Vac.Sci.Technol.A 21 318

    [24]

    Arya G, C Hsueh-Chia,, Maginn E J 2003 Mol.Simul. 29 697

    [25]

    Yamamoto K, Takeuchi H, Hyakutake T 2006 Phys.Fluids 18 046103

    [26]

    Prabha S K, Sathian S P 2012 Phys.Rev.E 85 041201

    [27]

    Cao B Y, Chen M, Guo Z Y 2005 Appl.Phys.Lett. 86 091905

    [28]

    Peddakotla S A, Kammara K K, Kumar R 2019 Microfluid.Nanofluid. 23 79

    [29]

    Sipkens T A, Daun K J 2018 J.Phys.Chem.C 122 20431

    [30]

    V Chirita, B A Pailthorpe, R E Collins 1993 J.Phys.D Appl.Phys. 26 133

    [31]

    Finger G W, Kapat J S, Bhattacharya A 2006 J.Fluids Eng. 129 31

    [32]

    Ozhgibesov M, Leu T, Cheng C, Utkin A 2012 J.Mol.Graph.Model. 38 375

    [33]

    Xiao C, Shi P F, Yan W M, Chen L, Qian L M, Kim S H 2019 Colloids Interfaces 3

    [34]

    Skoulidas A I, Sholl D S, Johnson J K 2006 J.Chem.Phys. 124 054708

    [35]

    Moe K, Moe M M 2011 27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS Pacific Grove,California,USA,July 10-15,2010 1313

    [36]

    Miao Q ff, Li L Q ff, Pi X C ff, Qiu Y ff, Fang M ff 2023 Phys.Fluids 35 082113

    [37]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2022 Phys.Fluids 34 117122

    [38]

    Wang Z J, Song C Q, Qin F H, Luo X S 2021 J.Fluid Mech. 928 A34

    [39]

    Liang T F ff, Zhang J ff, Li Q ff 2021 Phys.Fluids 33 082005

    [40]

    Liang T F, Li Q 2019 J.Appl.Phys. 126 084304

    [41]

    TAO R L, WANG Z H 2024 Chin.J.Aeronaut. 37 228

    [42]

    Minkowycz W, Sparrow E 2018 Advances in Numerical Heat Transfer, Volume 2. 0th edn. (Routledge). Pp200

    [43]

    Paterlini M, Ferguson D M 1998 Chem.Phys. 236 243

    [44]

    Tully J C 1980 J.Chem.Phys. 73 1975

    [45]

    Adelman S A, Doll J D 1976 J.Chem.Phys. 64 2375

    [46]

    Kimura T,, Maruyama S 2002 Microscale Thermophys.Eng. 6 3

    [47]

    Maruyama S, Kimura T 1999 Therm.Sci.Eng 7 63

    [48]

    Foiles S M, Baskes M I, Daw M S 1986 Phys.Rev.B 33 7983

    [49]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys.Rev.E 81 011203

    [50]

    Pham T T, To Q D, Lauriat G, Léonard C, Hoang V V 2012 Phys.Rev.E 86 051201

    [51]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int.J.Mol.Sci. 10 4638

    [52]

    Borisov S F, Litvinenko S A, Semenov Y G, Suetin P E 1978 J.Eng.Phys. 34 603

    [53]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A, Thöming J 2014 Comput.Fluids 97 31

    [54]

    Zhang R, Chang Q, Li H 2018 Acta Phys. Sin. 67 223401 (in Chinses)

    [55]

    [张冉, 常青, 李桦 2018 物理 学报 67 223401]

  • [1] 余绵, 李丙衡, 孟祥文, 吴连锋, 马连湘, 唐元政. 不同润湿条件下带正弦凸起粗糙表面上气泡成核的分子动力学研究.  , doi: 10.7498/aps.74.20250717
    [2] 龚路远, 魏鑫鼎, 韩韬, 郭亚丽, 沈胜强. 微结构表面几何特性对水蒸气凝结影响的分子动力学研究.  , doi: 10.7498/aps.74.20250324
    [3] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , doi: 10.7498/aps.72.20221332
    [4] 于航, 张冉, 杨帆, 李桦. 气体-表面相互作用中动量和能量分量间转化机制的分子动力学研究.  , doi: 10.7498/aps.70.20201192
    [5] 张烨, 张冉, 赖剑奇, 李桦. 宏观速度对适应系数的影响规律研究.  , doi: 10.7498/aps.68.20190987
    [6] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , doi: 10.7498/aps.63.086102
    [7] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟.  , doi: 10.7498/aps.62.103104
    [8] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用.  , doi: 10.7498/aps.62.165203
    [9] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟.  , doi: 10.7498/aps.60.045209
    [10] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟.  , doi: 10.7498/aps.60.095203
    [11] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟.  , doi: 10.7498/aps.59.7225
    [12] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究.  , doi: 10.7498/aps.58.53
    [13] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟.  , doi: 10.7498/aps.58.67
    [14] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟.  , doi: 10.7498/aps.58.199
    [15] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟.  , doi: 10.7498/aps.55.2882
    [16] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , doi: 10.7498/aps.54.4836
    [17] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程.  , doi: 10.7498/aps.52.2254
    [18] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , doi: 10.7498/aps.51.1388
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟.  , doi: 10.7498/aps.51.2386
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟.  , doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-17

/

返回文章
返回
Baidu
map