-
作为新一代的纤锌矿铁电材料,Al1-xScxN具有高的剩余极化强度、理想的矩形电滞回线、与CMOS后道工艺兼容、稳定的铁电相等优点。作为近几年铁电领域的热点材料,国内外科研人员进行了深入研究。本文对Al1-xScxN铁电薄膜的研究进展进行了全面的综述。在Al1-xScxN铁电性的影响因素方面,讨论了Sc含量、衬底类型、沉积条件、薄膜厚度、测试频率及温度等因素对薄膜的作用。在极化翻转机制方面,详细阐述Al1-xScxN电畴特性、翻转动力学、形核位置等微观物理机制。在应用前景上,Al1-xScxN薄膜在铁电随机存储器、铁电场效应管和铁电隧道结等铁电存储器中表现出巨大潜力,为新一代高密度、低功耗铁电存储器及纳米电子器件的发展提供有力支持。
-
关键词:
- Al1-xScxN 薄膜 /
- 铁电性 /
- 电畴翻转机制 /
- 铁电存储器
As a new generation of wurtzite-type ferroelectric material, Al1-xScxN exhibits outstanding properties such as high remnant polarization, ideal rectangular hysteresis loops, compatibility with back-end-of-line (BEOL) CMOS processes, and stable ferroelectric phases. In recent years, this material has become a focus in the field of ferroelectrics, attracting extensive research efforts worldwide. This paper provides a comprehensive review of the research progress on Al1-xScxN ferroelectric thin films. Regarding the factors influencing its ferroelectricity, the effects of Sc composition, substrate, deposition conditions, film thickness, testing frequency, and temperature are discussed. In terms of polarization switching mechanisms, the characteristics of ferroelectric domains, switching dynamics, nucleation sites, and fatigue behavior are summarized, offering insights into the underlying physical processes. From an application perspective, Al1-xScxN thin films show great potential in ferroelectric randomaccess memory (FeRAM), ferroelectric field-effect transistors (FeFETs), and ferroelectric tunnel junctions (FTJs), providing strong support for the development of next-generation high-density, lowpower ferroelectric memory and nanoelectronic devices.-
Keywords:
- Al1-xScxN film /
- ferroelectricity /
- domain reversal mechanism /
- ferroelectric memory
-
[1] Mikolajick T, Schroeder U, Slesazeck S 2020 IEEE Trans. Electron Devices 67 1434(in Chinese)[2020 67 1434]
[2] Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087(in Chinese)[2016 2 16087]
[3] Amanuma K, Hase T, Miyasaka Y 1995 Appl. Phys. Lett. 66 221(in Chinese)[1995 66 221]
[4] Li A D, Ling H Q, Wu D, Yu T, Liu Z G, Ming N B 2003 Solid State Commun. 125 469(in Chinese)[2003 125 469]
[5] Fu Z, Chen X, Li Z, Hu T, Zhang L, Lu P, Zhang S, Wang G, Dong X, Xu F 2020 Nat. Commun. 11 3809(in Chinese)[2020 11 3809]
[6] Nishino R, Fujita T C, Kagawa F, Kawasaki M 2020 Sci. Rep. 10 10864(in Chinese)[2020 10 10864]
[7] Park M H, Kwon D, Schroeder U, Mikolajick T 2021 MRS Bull. 46 1071(in Chinese)[2021 46 1071]
[8] B?scke T S, Müller J, Br?uhaus D, Schr?der U, B?ttger U 2011 Appl. Phys. Lett. 99 102903(in Chinese)[2011 99 102903]
[9] Schroeder U, Park M H, Mikolajick T, Hwang C S 2022 Nat. Rev. Mater. 7 653(in Chinese)[2022 7 653]
[10] Park J, Kim T H, Kwon O, Ismail M, Mahata C, Kim Y, Kim S, Kim S 2022 Nano Energy 104 107886(in Chinese)[2022 104 107886]
[11] Johnson B, Jones J L 2019 Ferroelectr. Doped Hafnium Oxide Mater. Prop. Devices,2019 25(in Chinese)[2019 Devices,2019 25]
[12] 2018 4 1800091(in Chinese)[Park M H, Chung C C, Schenk T, Richter C, Opsomer K, Detavernier C, Adelmann C, Jones J L, Mikolajick T, Schroeder U 2018 2018 Adv. Electron. Mater. 4 1800091]
[13] Goh Y, Hwang J, Lee Y, Kim M, Jeon S 2024 Appl. Phys. Lett. 117 242901(in Chinese)[2024 117 242901]
[14] Mikolajick T, Slesazeck S, Mulaosmanovic H, Park M H, Fichtner S, Lomenzo P D, Hoffmann M, Schroeder U 2021 J. Appl. Phys. 129 100901(in Chinese)[2021 129 100901]
[15] Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B 2019 J. Appl. Phys. 125 114103(in Chinese)[2019 125 114103]
[16] Yazawa K, Mangum J S, Gorai P, Brennecka G L, Zakutayev A 2022 J. Mater. Chem. C 10 17557(in Chinese)[2022 10 17557]
[17] Tasnádi F, Alling B, H?glund C, Wingqvist G, Birch J, Hultman L, Abrikosov I A 2010 Phys. Rev. Lett. 104 137601(in Chinese)[2010 104 137601]
[18] Lee C W, Yazawa K, Zakutayev A, Brennecka G L, Gorai P 2024 Sci. Adv. 10 eadl0848(in Chinese)[2024 10 eadl0848]
[19] Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M, Hiranaga Y, Cho Y, Funakubo H 2020 J. Appl. Phys. 128 114103(in Chinese)[2020 128 114103]
[20] Pradhan D K, Moore D C, Kim G, He Y, Musavigharavi P, Kim K H, Sharma N, Han Z, Du X, Puli V S, Stach E A, Joshua Kennedy W, Glavin N R, Olsson R H, Jariwala D 2024 Nat. Electron. 7 348(in Chinese)[2024 7 348]
[21] Fichtner S, Lofink F, Wagner B, Schonweger G, Kreutzer T N, Petraru A, Kohlstedt H 2020 IEEE 2020 joint conference of the IEEE international frequency control symposium and international symposium on applications of ferroelectrics 1(in Chinese)[2020 2020 joint conference of the IEEE international frequency control symposium and international symposium on applications of ferroelectrics 1]
[22] Yasuoka S, Mizutani R, Ota R, Shiraishi T, Shimizu T, Yasui S, Ehara Y, Nishida K, Uehara M, Yamada H, Akiyama M, Imai Y, Sakata O, Funakubo H 2022 J. Ceram. Soc. Jpn. 130 436(in Chinese)[2022 130 436]
[23] Satoh S, Ohtaka K, Shimatsu T, Tanaka S 2022 J. Appl. Phys. 132 025103(in Chinese)[2022 132 025103]
[24] Ye K H, Han G, Yeu I W, Hwang C S, Choi J H 2021 Phys. Status Solidi RRL – Rapid Res. Lett. 15 2100009(in Chinese)[2021 15 2100009]
[25] Hasegawa K, Shimizu T, Ohsawa T, Sakaguchi I, Ohashi N 2023 Appl. Phys. Lett. 123 192903(in Chinese)[2023 123 192903]
[26] Xi J, Zhou D, Lv T, Tong Y, Kou Q, Zhao Y 2024 Mater. Today Commun. 39 108966(in Chinese)[2024 39 108966]
[27] Biswas B, Saha B 2019 Phys. Rev. Mater. 3 020301(in Chinese)[2019 3 020301]
[28] Zhao Y, Sui J, Zhou D, Tong Y, Kou Q, Xi J 2025 Ceram. Int. 51 5038(in Chinese)[2025 51 5038]
[29] Shao S, Luo Z, Lu Y, Mazzalai A, Tosi C, Wu T 2022 J. Microelectromechanical Syst. 31 328(in Chinese)[2022 31 328]
[30] Nie R, Shao S, Luo Z, Kang X, Wu T 2022 Micromachines 13 1629(in Chinese)[2022 13 1629]
[31] Sandu C S, Parsapour F, Mertin S, Pashchenko V, Matloub R, LaGrange T, Heinz B, Muralt P 2019 Phys Status Solidi 216 1800569(in Chinese)[2019 216 1800569]
[32] Hayden J, Hossain M D, Xiong Y, Ferri K, Zhu W, Imperatore M V, Giebink N, Trolier-McKinstry S, Dabo I, Maria J P 2021 Phys. Rev. Mater. 5 044412(in Chinese)[2021 5 044412]
[33] Baeumler M, Lu Y, Kurz N, Kirste L, Prescher M, Christoph T, Wagner J, ?ukauskait? A, Ambacher O 2019 J. Appl. Phys. 126 045715(in Chinese)[2019 126 045715]
[34] Yasuoka S, Mizutani R, Ota R, Shiraishi T, Shimizu T, Uehara M, Yamada H, Akiyama M, Funakubo H 2022 ACS Appl. Electron. Mater. 4 5165(in Chinese)[2022 4 5165]
[35] Li-Mo Wang 2006 IEEE2006 25th Int. Conf. Microelectron. Belgrade, Serbia and 25th International Conference on Microelectronics 576(in Chinese)[2006 25th International Conference on Microelectronics 576]
[36] Jafari H, Ravan B A, Faghihnasiri M 2018 Solid State Commun. 282 21(in Chinese)[2018 282 21]
[37] McMitchell S R C, Walke A M, Banerjee K, Mertens S, Piao X, Mao M, Katcko K, Vellianitis G, Van Dal M, Lin Y M, Van Den Bosch G, Delhougne R, Kar G S 2023 ACS Appl. Electron. Mater. 5 858(in Chinese)[2023 5 858]
[38] Islam M R, Sch?nweger G, Wolff N, Petraru A, Kohlstedt H, Fichtner S, Kienle L 2023 ACS Appl. Mater. Interfaces 15 41606(in Chinese)[2023 15 41606]
[39] Khánh N Q, Horváth Z E, Zolnai Z, Petrik P, Pósa L, Volk J 2024 Mater. Sci. Semicond. Process. 169 107902(in Chinese)[2024 169 107902]
[40] Xi J, Zhou D, Tong Y, Zhao Y, Lv T 2024 Mater. Today Commun. 41 110834(in Chinese)[2024 41 110834]
[41] Wang R, Yao D, Zhou J, Li Y, Jiang Z, Chen D, Ran X, Gao Y, Cheng Z, Wang Y, Liu Y, Hao Y, Han G 2024 ArXiv 2404.04863 abs2404.04863(in Chinese)[2024 2404.04863 abs2404.04863]
[42] Chen S M, Hoshii T, Wakabayashi H, Tsutsui K, Chang E Y, Kakushima K 2024 Jpn. J. Appl. Phys. 63 03SP45(in Chinese)[2024 63 03SP45]
[43] Kim K, Lee S 2006 J. Appl. Phys. 100 051604(in Chinese)[2006 100 051604]
[44] Musavigharavi P, Meng A C, Wang D, Zheng J, Foucher A C, Olsson R H I, Stach E A 2021 J. Phys. Chem. C 125 14394(in Chinese)[2021 125 14394]
[45] Tsai S L, Hoshii T, Wakabayashi H, Tsutsui K, Chung T K, Chang E Y, Kakushima K 2021 Jpn. J. Appl. Phys. 60 SBBA05(in Chinese)[2021 60 SBBA05]
[46] Wang D, Wang P, Mondal S, Hu M, Wang D, Wu Y, Ma T, Mi Z 2023 Appl. Phys. Lett. 122 052101(in Chinese)[2023 122 052101]
[47] Sch?nweger G, Wolff N, Islam M R, Gremmel M, Petraru A, Kienle L, Kohlstedt H, Fichtner S 2023 Adv. Sci. 10 2302296(in Chinese)[2023 10 2302296]
[48] Ryoo S K, Kim K D, Choi W, Sriboriboon P, Heo S, Seo H, Jang Y H, Jeon J W, Yeom M K, Lee S H, Park H S, Kim Y, Hwang C S 2025 Adv. Mater. 37 2413295(in Chinese)[2025 37 2413295]
[49] Sch?nweger G, Islam M R, Wolff N, Petraru A, Kienle L, Kohlstedt H, Fichtner S 2023 Phys. Status Solidi RRL – Rapid Res. Lett. 17 2200312(in Chinese)[2023 17 2200312]
[50] Mizutani R, Yasuoka S, Shiraishi T, Shimizu T, Uehara M, Yamada H, Akiyama M, Sakata O, Funakubo H 2021 Appl. Phys. Express 14 105501(in Chinese)[2021 14 105501]
[51] Sch?nweger G, Petraru A, Islam M R, Wolff N, Haas B, Hammud A, Koch C, Kienle L, Kohlstedt H, Fichtner S 2022 Adv. Funct. Mater. 32 2109632(in Chinese)[2022 32 2109632]
[52] Mueller S, Muller J, Schroeder U, Mikolajick T 2013 IEEE Trans. Device Mater. Reliab. 13 93(in Chinese)[2013 13 93]
[53] Stolichnov I, Tagantsev A K, Colla E, Setter N, Cross J S 2005 J. Appl. Phys. 98 084106(in Chinese)[2005 98 084106]
[54] Drury D, Yazawa K, Zakutayev A, Hanrahan B, Brennecka G 2022 Micromachines 13 887(in Chinese)[2022 13 887]
[55] Gund V, Davaji B, Lee H, Asadi M J, Casamento J, Xing H G, Jena D, Lal A 2021 IEEE 2021 IEEE Int. Symp. Appl. Ferroelectr. ISAF 1(in Chinese)[2021 2021 IEEE Int. Symp. Appl. Ferroelectr. ISAF 1]
[56] Wang J, Park M, Ansari A 2022 J. Microelectromechanical Syst. 31 234(in Chinese)[2022 31 234]
[57] Islam Md R, Wolff N, Yassine M, Sch?nweger G, Christian B, Kohlstedt H, Ambacher O, Lofink F, Kienle L, Fichtner S 2021 Appl. Phys. Lett. 118 232905(in Chinese)[2021 118 232905]
[58] Casamento J, Gund V, Lee H, Nomoto K, Maeda T, Davaji B, Asadi M J, Wright J, Shao Y T, Muller D A, Lal A, Huili, Xing, Jena D 2021 ArXiv 10114 abs2105.10114(in Chinese)[2021 10114 abs2105.10114]
[59] Wang D, Musavigharavi P, Zheng J, Esteves G, Liu X, Fiagbenu M M A, Stach E A, Jariwala D, Olsson R H 2021 Phys. Status Solidi RRL – Rapid Res. Lett. 15 2000575(in Chinese)[2021 15 2000575]
[60] Ishibashi Y, Orihara H 1995 Integr. Ferroelectr. 9 57(in Chinese)[1995 9 57]
[61] Zhu W, Hayden J, He F, Yang J I, Tipsawat P, Hossain M D, Maria J P, Trolier-McKinstry S 2021 Appl. Phys. Lett. 119 062901(in Chinese)[2021 119 062901]
[62] Lu H, Sch?nweger G, Petraru A, Kohlstedt H, Fichtner S, Gruverman A 2024 Adv. Funct. Mater. 34 2315169(in Chinese)[2024 34 2315169]
[63] Wolff N, Sch?nweger G, Streicher I, Islam M R, Braun N, Straňák P, Kirste L, Prescher M, Lotnyk A, Kohlstedt H, Leone S, Kienle L, Fichtner S 2024 Adv. Phys. Res. 3 2300113(in Chinese)[2024 3 2300113]
[64] Liu M, Zang H, Jia Y, Jiang K, Ben J, Lv S, Li D, Sun X, Li D 2024 ACS Appl. Mater. Interfaces 16 16427(in Chinese)[2024 16 16427]
[65] Yasuoka S, Shimizu T, Okamoto K, Sun N, Doko S, Matsui N, Irisawa T, Tsunekawa K, Gruverman A, Funakubo H 2024 Adv. Mater. Interfaces 12 2400627(in Chinese)[2024 12 2400627]
[66] Skidmore C H, Spurling R J, Hayden J, Baksa S M, Behrendt D, Goodling D, Nordlander J L, Suceava A, Casamento J, Akkopru-Akgun B, Calderon S, Dabo I, Gopalan V, Kelley K P, Rappe A M, Trolier-McKinstry S, Dickey E C, Maria J P 2025 Nature 637 574(in Chinese)[2025 637 574]
[67] Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J, Ramesh R 2009 Nat. Mater. 8 229(in Chinese)[2009 8 229]
[68] Kim K D, Lee Y B, Lee S H, Lee I S, Ryoo S K, Byun S, Lee J H, Kim H, Park H W, Hwang C S 2023 Adv. Electron. Mater. 9 2201142(in Chinese)[2023 9 2201142]
[69] Wolff N, Fichtner S, Haas B, Islam M R, Niekiel F, Kessel M, Ambacher O, Koch C, Wagner B, Lofink F, Kienle L 2021 J. Appl. Phys. 129 034103(in Chinese)[2021 129 034103]
[70] Kim K D, Ryoo S K, Park H S, Choi S, Park T W, Yeom M K, Hwang C S 2024 J. Appl. Phys. 136 024101(in Chinese)[2024 136 024101]
[71] Masashi Suzuki; Takahiko Yanagitani; Hiroyuki Odagawa 2014 Appl. Phys. Lett. 104 172905(in Chinese)[2014 104 172905]
[72] S.A. Anggraini, M. Uehara, K. Hirata, H. Yamada, M. Akiyama 2020 Sci. Rep. 10 4369(in Chinese)[2020 10 4369]
[73] M.R. Islam, N. Wolff, G. Sch?nweger, T.-N. Kreutzer, M. Brown, M. Gremmel, E.S. Ollanescu-Orendi, P. Straňák, L. Kirste, G.L. Brennecka, S. Fichtner, L. Kienle 2025 Adv. Electron. Mater. 11 2400874(in Chinese)[2025 11 2400874]
[74] Yazawa K, Hayden J, Maria J P, Zhu W, Trolier-McKinstry S, Zakutayev A, Brennecka G L 2023 Mater. Horiz. 10 2936(in Chinese)[2023 10 2936]
[75] Krishnamoorthy A, Tiwari S C, Nakano A, Kalia R K, Vashishta P 2021 Nanotechnology 32 49LT02(in Chinese)[2021 32 49LT02]
[76] Calderon S, Hayden J, Baksa S M, Tzou W, Trolier-McKinstry S, Dabo I, Maria J P, Dickey E C 2023 Science 380 1034(in Chinese)[2023 380 1034]
[77] Gremmel M, Fichtner S 2024 J. Appl. Phys. 135 204101(in Chinese)[2024 135 204101]
[78] Wolff N, Grieb T, Sch?nweger G, Krause F F, Streicher I, Leone S, Rosenauer A, Fichtner S, Kienle L 2025 J. Appl. Phys. 137 084101(in Chinese)[2025 137 084101]
[79] Chen L, Wang Q, Liu C, Li M, Song W, Wang W, Loke D K, Zhu Y 2024 Materials 17 397(in Chinese)[2024 17 397]
[80] Kataoka J, Tsai S L, Hoshii T, Wakabayashi H, Tsutsui K, Kakushima K 2021 Jpn. J. Appl. Phys. 60 030907(in Chinese)[2021 60 030907]
[81] Wang D, Wang D, Molla M, Liu Y, Yang S, Yuan S, Liu J, Hu M, Wu Y, Ma T, Sun K, Guo H, Kioupakis E, Mi Z 2025 Nature 641 76(in Chinese)[2025 641 76]
[82] Kim K D, Lee Y B, Lee S H, Lee I S, Ryoo S K, Byun S Y, Lee J H, Hwang C S 2023 Nanoscale 15 16390(in Chinese)[2023 15 16390]
[83] Lyu X, Si M, Shrestha P R, Cheung K P, Ye P D 2019 IEEE 2019 IEEE Int. Electron Devices Meet. IEDM San 15.2.1(in Chinese)[2019 2019 IEEE Int. Electron Devices Meet. IEDM San 15.2.1]
[84] Schenk T, Pe?i? M, Slesazeck S, Schroeder U, Mikolajick T 2020 Rep. Prog. Phys. 83 086501(in Chinese)[2020 83 086501]
[85] Deng S, Zhao Z, Kurinec S, Ni K, Xiao Y, Yu T, Narayanan V 2021 Proc. 2021 Gt. Lakes Symp. VLSI New 2021 473(in Chinese)[2021 2021 473]
[86] Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 eabj9979(in Chinese)[2022 376 eabj9979]
[87] Wang D, Musavigharavi P, Zheng J, Esteves G, Liu X, Fiagbenu M M A, Stach E A, Jariwala D, Olsson R H 2021 Phys. Status Solidi RRL – Rapid Res. Lett. 15 2000575(in Chinese)[2021 15 2000575]
[88] Zhao X, Yu J, Li Y, Wang Y, Cao F, Cheng Y, Wei Y, Jiang H, Liu Q, Liu M 2025 2025 Symp. VLSI Technol. Circuits VLSI Technol. In 2025 symposium on VLSI technology and circuits 1(in Chinese)[2025 In 2025 symposium on VLSI technology and circuits 1]
[89] Park M H, Kwon D, Schroeder U, Mikolajick T 2021 MRS Bull. 46 1071(in Chinese)[2021 46 1071]
[90] Lee D H, Lee Y, Cho Y H, Choi H, Kim S H, Park M H 2023 Adv. Funct. Mater. 33 2303956(in Chinese)[2023 33 2303956]
[91] Beyer S, Dunkel S, Trentzsch M, Muller J, Hellmich A, Utess D, Paul J, Kleimaier D, Pellerin J, Muller S, Ocker J, Benoist A, Zhou H, Mennenga M, Schuster M, Tassan F, Noack M, Pourkeramati A, Muller F, Lederer M, Ali T, Hoffmann R, Kampfe T, Seidel K, Mulaosmanovic H, Breyer E T, Mikolajick T, Slesazeck S 2020 IEEE In 2020 IEEE International Memory Workshop 1(in Chinese)[2020 In 2020 IEEE International Memory Workshop 1]
[92] Liu X, Wang D, Kim K H, Katti K, Zheng J, Musavigharavi P, Miao J, Stach E A, Olsson R H, Jariwala D 2021 Nano Lett. 21 3753(in Chinese)[2021 21 3753]
[93] Kim K H, Oh S, Fiagbenu M M A, Zheng J, Musavigharavi P, Kumar P, Trainor N, Aljarb A, Wan Y, Kim H M, Katti K, Song S, Kim G, Tang Z, Fu J H, Hakami M, Tung V, Redwing J M, Stach E A, Olsson R H, Jariwala D 2023 Nat. Nanotechnol. 18 1044(in Chinese)[2023 18 1044]
[94] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606(in Chinese)[2006 100 051606]
[95] Hwang J, Goh Y, Jeon S 2020 IEEE Electron Device Lett. 41 1193(in Chinese)[2020 41 1193]
[96] Kobayashi M, Tagawa Y, Mo F, Saraya T, Hiramoto T 2019 IEEE J. Electron Devices Soc. 7 134(in Chinese)[2019 7 134]
[97] Shekhawat A, Walters G, Yang N, Guo J, Nishida T, Moghaddam S 2020 Nanotechnology 31 39LT01(in Chinese)[2020 31 39LT01]
[98] Mikolajick T, Slesazeck S, Schroeder U, Lomenzo P D, Breyer E T, Mulaosmanovic H, Hoffmann M, Mittmann T, Mehmood F, Max B 2019 IEEE 2019 IEEE International Electron Devices Meeting 15.5.1(in Chinese)[2019 2019 IEEE International Electron Devices Meeting 15.5.1]
[99] Liu X, Zheng J, Wang D, Musavigharavi P, Stach E A, Olsson R, Jariwala D 2021 Appl. Phys. Lett. 118 202901(in Chinese)[2021 118 202901]
[100] Lou X J, Zhang M, Redfern S A T, Scott J F 2007 Phys. Rev. B 75 224104(in Chinese)[2007 75 224104]
[101] Pan X, Ma T P 2011 Appl. Phys. Lett. 99 013505(in Chinese)[2011 99 013505]
[102] Liu M, Li D, Liu Z, Gao Y, Zang H, Shi Z, Ben J, Jiang K, Lai B, Zhang W, Wang S, Lü W, Sun X, Tian H, Li D 2025 Adv. Mater. 37 2505988(in Chinese)[2025 37 2505988]
[103] Guido R, Mikolajick T, Schroeder U, Lomenzo P D 2023 Nano Lett. 23 7213(in Chinese)[2023 23 7213]
[104] Rayner G, O’Toole N, Nelson N, Liu B, Shallenberger J, Muha G, Behera P, Cheema S, Johs B, Moshirfatemi N, Drury D, Hanrahan B, Strnad N 2025 10.21203/rs.3.rs-6960782/v1 cond-mat.mes-hall 1(in Chinese)[2025 cond-mat.mes-hall 1]
计量
- 文章访问数: 18
- PDF下载量: 0
- 被引次数: 0