-
This study uses computer simulations to examine how an asymmetric gear can be driven by Brownian particles that interact in a non-reciprocal manner. Unlike many active matter systems, the particles are not self-propelled. Instead, the non-reciprocal interactions break action-reaction symmetry and produce a net force that drives the system out of equilibrium. The gear has an asymmetric shape, which helps select a preferred direction of rotation.
We find that the rotation direction of the gear is influenced by both its asymmetry and parameters of system. When system parameters are identical, gears with two structures of opposite chirality exhibit equal magnitudes of average angular velocity, differing only in their rotational directions. For a specific gear, the rotation speed increases with the strength of the non-reciprocal interaction and shows a non-monotonic dependence on temperature and particle density. Interestingly, under high density conditions, the rotation direction can reverse. At low temperatures, particle clusters form and lead to reversed motion, while higher temperatures restore rotation in the original direction.
This work illustrates how non-reciprocal interactions can be used to generate directed motion in passive structures such as gears. It offers one possible approach to controlling motion in small-scale systems without external energy input, and may contribute to the design of simple nanoscale machines.-
Keywords:
- Brownian particles /
- Gear /
- Nonreciprocal interaction /
- Directed transport
-
[1] Oster G 2002 Nature 417 25
[2] Schweitzer F, Ebeling W, Tilch B 1998 Phys. Rev. Lett. 80 5044
[3] Astumian R D 1997 Science 276 917
[4] Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446
[5] Astumian R D, Hänggi P 2002 Phys. Today 55 33
[6] Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387
[7] Reimann P 2002 Phys. Rep. 361 57
[8] Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51
[9] Zhang S X, Wang S, Liu X, Wang X Z, Liu F C, He Y F 2025 Acta Phys. Sin. 74 075202 (in Chinese) [张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰 2025 74 075202]
[10] Lou X, Yu N, Chen K, Zhou X, Podgornik R, Yang M C 2021 Chin. Phys. B 30 114702
[11] Farkas Z, Tegzes P, Vukics A, Vicsek T 1999 Phys. Rev. E 60 7022
[12] Wambaugh J F, Reichhardt C, Olson C J 2002 Phys. Rev. E 65 031308
[13] Galajda P, Keymer J, Chaikin P, Austin R 2007 J. Bacteriol. 189 8704
[14] Wan M B, Reichhardt C J O, Nussinov Z, Reichhardt C 2008 Phys. Rev. Lett. 101 018102
[15] Angelani L, Di Leonardo R, Ruocco G 2009 Phys. Rev. Lett. 102 048104
[16] Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F, Di Fabrizio E 2010 Proc. Natl. Acad. Sci. U. S. A. 107 9541
[17] Sokolov A, Apodaca M M, Grzybowski B A, Aranson I S 2010 Proc. Natl. Acad. Sci. U. S. A. 107 969
[18] Kojima M, Miyamoto T, Nakajima M, Homma M, Arai T, Fukuda T 2015 Sens. Actuator B-Chem. 222 1220
[19] Li H, Zhang H P 2013 EPL 102 50007
[20] Reichhardt C, Ray D, Reichhardt C J O 2015 New J. Phys. 17 073034
[21] Yang M C, Ripoll M 2014 Soft Matter 10 1006
[22] Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F 2008 Eur. Phys. J. B 64 451
[23] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
[24] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143
[25] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 45006
[26] You Z H, Baskaran A, Marchetti M C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 19767
[27] Ivlev A V, Bartnick J, Heinen M, Du C R, Nosenko V, Löwen H 2015 Phys. Rev. X 5 011035
[28] Mandal R, Jaramillo S S, Sollich P 2024 Phys. Rev. E 109 L062602
[29] Benois A, Jardat M, Dahirel V, Démery V, Agudo-Canalejo J, Golestanian R, Illien P 2024 Phys. Rev. E 108 054606
[30] Meredith C H, Moerman P G, Groenewold J, Chiu Y J, Kegel W K, van Blaaderen A, Zarzar L D 2020 Nat. Chem. 12 1136
[31] Kreienkamp K L, Klapp S H L 2022 New J. Phys. 24 123009
[32] Gupta R K, Kant R, Soni H, Sood A K, Ramaswamy S 2022 Phys. Rev. E 105 064602
[33] Chiu Y J, Omar A K 2023 J. Chem. Phys. 158 164903
[34] Pigolotti S, Benzi R 2014 Phys. Rev. Lett. 112 188102
[35] Long R A, Azam F 2001 Appl. Environ. Microbiol. 67 4975
[36] Xiong L Y, Cao Y S, Cooper R, Rappel W J, Hasty J, Tsimring L 2020 eLife 9 e48885
[37] Yanni D, Márquez-Zacarías P, Yunker P J, Ratcliff W C 2019 Curr. Biol. 29 R545
[38] Strandburg-Peshkin A, Twomey C R, Bode N W F, Kao A B, Katz Y, Ioannou C C, Rosenthal S B, Torney C J, Wu H S, Levin S A, Couzin I D 2013 Curr. Biol. 23 R709
[39] Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71
[40] Helbing D, Molnár P 1995 Phys. Rev. E 51 4282
[41] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[42] Bain N, Bartolo D 2019 Science 363 46
[43] Gardi G, Sitti M 2023 Phys. Rev. Lett. 131 058301
[44] Ahmadi B, Mazurek P, Horodecki P, Barzanjeh S 2024 Phys. Rev. Lett. 132 210402
[45] Cocconi L, Alston H, Bertrand T 2023 Phys. Rev. Research 5 043032
[46] Jones J E 1924 Proc. R. Soc. A 106 463
[47] Ai B Q 2023 Phys. Rev. E 108 064409
计量
- 文章访问数: 12
- PDF下载量: 0
- 被引次数: 0