搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有非互易相互作用的布朗粒子驱动不对称齿轮

王艳 李佳健 艾保全

引用本文:
Citation:

具有非互易相互作用的布朗粒子驱动不对称齿轮

王艳, 李佳健, 艾保全

Asymmetric gear driven by Brownian particles with non-reciprocal interactions

WANG Yan, LI Jiajian, AI Baoquan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文通过朗之万动力学模拟,研究了具有非互易相互作用的布朗粒子对不对称齿轮的驱动。结果表明,即便在没有自推进活性的情况下,非互易相互作用所产生的净力仍可作为一种有效的非平衡驱动力,驱动不对称齿轮发生可控的定向旋转。该系统展现出丰富的非平衡动力学行为:齿轮的旋转方向不仅受其自身结构不对称性调控,还可通过改变粒子的填充分数实现反转。此外,齿轮的角速度随粒子非互易强度的增强而增大,并随温度及粒子填充分数呈现非单调变化关系,在一定参数区间内存在使齿轮角速度达到最大的最优条件。这些发现为微纳尺度下的定向输运与控制提供了新思路。
    This study uses computer simulations to examine how an asymmetric gear can be driven by Brownian particles that interact in a non-reciprocal manner. Unlike many active matter systems, the particles are not self-propelled. Instead, the non-reciprocal interactions break action-reaction symmetry and produce a net force that drives the system out of equilibrium. The gear has an asymmetric shape, which helps select a preferred direction of rotation.
    We find that the rotation direction of the gear is influenced by both its asymmetry and parameters of system. When system parameters are identical, gears with two structures of opposite chirality exhibit equal magnitudes of average angular velocity, differing only in their rotational directions. For a specific gear, the rotation speed increases with the strength of the non-reciprocal interaction and shows a non-monotonic dependence on temperature and particle density. Interestingly, under high density conditions, the rotation direction can reverse. At low temperatures, particle clusters form and lead to reversed motion, while higher temperatures restore rotation in the original direction.
    This work illustrates how non-reciprocal interactions can be used to generate directed motion in passive structures such as gears. It offers one possible approach to controlling motion in small-scale systems without external energy input, and may contribute to the design of simple nanoscale machines.
  • [1]

    Oster G 2002 Nature 417 25

    [2]

    Schweitzer F, Ebeling W, Tilch B 1998 Phys. Rev. Lett. 80 5044

    [3]

    Astumian R D 1997 Science 276 917

    [4]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446

    [5]

    Astumian R D, Hänggi P 2002 Phys. Today 55 33

    [6]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [7]

    Reimann P 2002 Phys. Rep. 361 57

    [8]

    Reichhardt C J O, Reichhardt C 2017 Annu. Rev. Condens. Matter Phys. 8 51

    [9]

    Zhang S X, Wang S, Liu X, Wang X Z, Liu F C, He Y F 2025 Acta Phys. Sin. 74 075202 (in Chinese) [张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰 2025 74 075202]

    [10]

    Lou X, Yu N, Chen K, Zhou X, Podgornik R, Yang M C 2021 Chin. Phys. B 30 114702

    [11]

    Farkas Z, Tegzes P, Vukics A, Vicsek T 1999 Phys. Rev. E 60 7022

    [12]

    Wambaugh J F, Reichhardt C, Olson C J 2002 Phys. Rev. E 65 031308

    [13]

    Galajda P, Keymer J, Chaikin P, Austin R 2007 J. Bacteriol. 189 8704

    [14]

    Wan M B, Reichhardt C J O, Nussinov Z, Reichhardt C 2008 Phys. Rev. Lett. 101 018102

    [15]

    Angelani L, Di Leonardo R, Ruocco G 2009 Phys. Rev. Lett. 102 048104

    [16]

    Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F, Di Fabrizio E 2010 Proc. Natl. Acad. Sci. U. S. A. 107 9541

    [17]

    Sokolov A, Apodaca M M, Grzybowski B A, Aranson I S 2010 Proc. Natl. Acad. Sci. U. S. A. 107 969

    [18]

    Kojima M, Miyamoto T, Nakajima M, Homma M, Arai T, Fukuda T 2015 Sens. Actuator B-Chem. 222 1220

    [19]

    Li H, Zhang H P 2013 EPL 102 50007

    [20]

    Reichhardt C, Ray D, Reichhardt C J O 2015 New J. Phys. 17 073034

    [21]

    Yang M C, Ripoll M 2014 Soft Matter 10 1006

    [22]

    Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F 2008 Eur. Phys. J. B 64 451

    [23]

    Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323

    [24]

    Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, Simha R A 2013 Rev. Mod. Phys. 85 1143

    [25]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 45006

    [26]

    You Z H, Baskaran A, Marchetti M C 2020 Proc. Natl. Acad. Sci. U. S. A. 117 19767

    [27]

    Ivlev A V, Bartnick J, Heinen M, Du C R, Nosenko V, Löwen H 2015 Phys. Rev. X 5 011035

    [28]

    Mandal R, Jaramillo S S, Sollich P 2024 Phys. Rev. E 109 L062602

    [29]

    Benois A, Jardat M, Dahirel V, Démery V, Agudo-Canalejo J, Golestanian R, Illien P 2024 Phys. Rev. E 108 054606

    [30]

    Meredith C H, Moerman P G, Groenewold J, Chiu Y J, Kegel W K, van Blaaderen A, Zarzar L D 2020 Nat. Chem. 12 1136

    [31]

    Kreienkamp K L, Klapp S H L 2022 New J. Phys. 24 123009

    [32]

    Gupta R K, Kant R, Soni H, Sood A K, Ramaswamy S 2022 Phys. Rev. E 105 064602

    [33]

    Chiu Y J, Omar A K 2023 J. Chem. Phys. 158 164903

    [34]

    Pigolotti S, Benzi R 2014 Phys. Rev. Lett. 112 188102

    [35]

    Long R A, Azam F 2001 Appl. Environ. Microbiol. 67 4975

    [36]

    Xiong L Y, Cao Y S, Cooper R, Rappel W J, Hasty J, Tsimring L 2020 eLife 9 e48885

    [37]

    Yanni D, Márquez-Zacarías P, Yunker P J, Ratcliff W C 2019 Curr. Biol. 29 R545

    [38]

    Strandburg-Peshkin A, Twomey C R, Bode N W F, Kao A B, Katz Y, Ioannou C C, Rosenthal S B, Torney C J, Wu H S, Levin S A, Couzin I D 2013 Curr. Biol. 23 R709

    [39]

    Vicsek T, Zafeiris A 2012 Phys. Rep. 517 71

    [40]

    Helbing D, Molnár P 1995 Phys. Rev. E 51 4282

    [41]

    Helbing D, Farkas I, Vicsek T 2000 Nature 407 487

    [42]

    Bain N, Bartolo D 2019 Science 363 46

    [43]

    Gardi G, Sitti M 2023 Phys. Rev. Lett. 131 058301

    [44]

    Ahmadi B, Mazurek P, Horodecki P, Barzanjeh S 2024 Phys. Rev. Lett. 132 210402

    [45]

    Cocconi L, Alston H, Bertrand T 2023 Phys. Rev. Research 5 043032

    [46]

    Jones J E 1924 Proc. R. Soc. A 106 463

    [47]

    Ai B Q 2023 Phys. Rev. E 108 064409

  • [1] 陈健丽, 李佳健, 艾保全. 具有吸引作用的活性布朗粒子的团簇行为和自发速度对齐.  , doi: 10.7498/aps.74.20241746
    [2] 付天琦, 申伯洋, 马欣然, 黄仁忠, 范黎明, 艾保全, 高天附, 郑志刚. 非互易耦合布朗粒子的定向输运.  , doi: 10.7498/aps.74.20250689
    [3] 刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚. 非保守力作用下二维耦合布朗粒子的定向输运.  , doi: 10.7498/aps.72.20221741
    [4] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制.  , doi: 10.7498/aps.70.20210517
    [5] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运.  , doi: 10.7498/aps.69.20191961
    [6] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能.  , doi: 10.7498/aps.68.20191203
    [7] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究.  , doi: 10.7498/aps.66.010501
    [8] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题.  , doi: 10.7498/aps.65.150501
    [9] 吴魏霞, 宋艳丽, 韩英荣. 二维耦合定向输运模型研究.  , doi: 10.7498/aps.64.150501
    [10] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运.  , doi: 10.7498/aps.64.090505
    [11] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运.  , doi: 10.7498/aps.64.120501
    [12] 周兴旺, 林丽烽, 马洪, 罗懋康. 时间非对称分数阶类Langevin棘齿.  , doi: 10.7498/aps.63.110501
    [13] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运.  , doi: 10.7498/aps.63.120503
    [14] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响.  , doi: 10.7498/aps.63.160502
    [15] 王莉芳, 高天附, 黄仁忠, 郑玉祥. 外力作用下反馈耦合布朗棘轮的定向输运.  , doi: 10.7498/aps.62.070502
    [16] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象.  , doi: 10.7498/aps.62.240501
    [17] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究.  , doi: 10.7498/aps.62.190511
    [18] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象.  , doi: 10.7498/aps.61.210501
    [19] 吕艳, 王海燕, 包景东. 内部棘轮.  , doi: 10.7498/aps.59.4466
    [20] 展永, 包景东, 卓益忠, 吴锡真. 布朗马达的定向输运模型.  , doi: 10.7498/aps.46.1880
计量
  • 文章访问数:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-15

/

返回文章
返回
Baidu
map