-
针对模式复用器难以兼容低损耗、小尺寸、多通道的难题,本文结合数字结构与波导结构,设计、加工、测试了一种超紧凑8通道模式-偏振复用器,以大幅度提升光互连的集成度和传输容量. 数字结构是由新颖的自适应直接二进制搜索(Adaptive direct-binary-search,ADBS)算法优化,用于TE0、TE1、TE2和TE3模式的复用和解复用. ADBS算法通过引入池化算子和变异算子可以自适应地调节局部收敛,在保障器件小尺寸的前提下,大幅降低优化时间成本. 波导结构是由非对称定向耦合器(asymmetrical directional coupler,ADC)设计,用于TM1、TM2、TM3和TM4模式的复用和解复用. ADC结构通过级联策略,在数字结构的基础上,进一步扩展通道数量. 基于现有研究来看,所设计数字-波导结构有效长度约为100 μm,是尺寸最小的8通道复用器. 测试结果显示,在1550 nm处,测量的插入损耗(insertion loss,IL)和串扰(crosstalk,CT)分别小于1. 2dB和-12. 5 dB. 同时,在1540 nm到1560 nm波长范围内,IL和CT分别小于1. 7 dB和-9. 3 dB. 此外,在256 Gbps数据传输实验中,测试所得眼图呈现出清晰且开放的特征,直观地反映出该器件具有优异的数据传输能力.
-
关键词:
- 8通道模式-偏振复用器 /
- 自适应直接二进制搜索算法 /
- 非对称定向耦合器
Mode division multiplexing technology can augment the single-wavelength capacity via orthogonal eigenmodes within a multi-mode optical waveguide. In order to achieve the low-loss, small-size, multi-channel mode multiplexers, an 8-channel mode-polarization multiplexer consisting of digital structures and waveguide structures is designed, fabricated, and measured to improves the integration and transmission capacity of optical interconnects. The digital structures optimized by a novel adaptive direct binary search (ADBS) algorithm works for the TE0, TE1, TE2, and TE3 modes. The ADBS algorithm can adaptively escape local convergences and greatly reduce time costs because of the introductions of the pooling operator and mutation operator. The waveguide structures designed by the cascaded asymmetrical directional couplers (ADCs) works for the TM1, TM2, TM3, and TM4 modes. The ADC structures further expands the number of channels based on the digital structure through a cascade strategy. To the best of our knowledge, the digital-waveguide structure with an effective length of about 100 μm is the smallest 8-channel mode-polarization multiplexer. The device is fabricated on a SOI wafer with a 220 nm-thick top silicon layer and a 1 μm-thick silica cladding. The measured insertion loss (IL) and crosstalk (CT) are less than 1.2 dB and lower than -12.5 dB at 1550 nm, respectively. At the same time, the measured ILs and CTs are less than 1.7 dB and lower than -9.3 dB from 1540 nm to 1560 nm, respectively. In addition, clear and open eye diagrams are obtained during the transmission of 256 Gbps signals, verifying the stable and high-speed data transmission capability.-
Keywords:
- 8-channel mode-polarization multiplexer /
- adaptive direct binary search algorithm /
- asymmetrical directional couplers
-
[1] Yang Y L, Wu Y, Hou M Z, Luo J S, Xie X L 2023 Neural Process. Lett. 55 7135.
[2] Zhang J W, Bhuiyan M Z A, Yang X, Wang T, Xu X S, Hayajneh T, Khan F 2021 IEEE Internet Things 9 22184.
[3] Li C, He A L, Wen Y H, Liu G, Chronopoulos A T 2023 IEEE Serv. Comput. 16 3550.
[4] Zhao Y T, Xiang J L, He Y, Yin Y C, He A, Zhang Y, Yang Z Y, Guo X H, Su Y K 2022 Laser Photonics Rev. 16 2200005.
[5] Richardson D J, Fini J M, Nelson L E 2013 Nat. Photonics, 7 354.
[6] Sun A L, Xing S Z, Deng X Y, Shen R Y, Yan A, Hu F C, Yuan Y Q, Dong B Y, Zhao J H, Huang O H, Li Z W, Shi J Y, Zhou Y J, Shen C, Zhao Y H, Hong B Z, Chu W, Zhang J W, Cai H, Chi N 2025 Nat. Commun. 16 2372.
[7] Zhang Y D, Liu G, Dai X Y, Zhang Y M, Hong W, Lu Q Y, Huang L R, Guo W H 2025 Opt. Express 33 6455.
[8] Atri A, Zarifkar A 2025 Opt. Commun. 581 131620.
[9] Li H T, Deng J, Feng J B, Zhao L H, Shen Z H, Xia G Q, Wu Z M, Wu J G, Yang J B 2025 Chin. Opt. Lett. 23 022201.
[10] Ling Q L, Dong P H, Chu Y Y, Dong X W, Chen J Y, Dai D X, Shi Y C 2023 Chip 2 100061.
[11] Dai D X, Li C L, Wang S P, Wu H, Shi Y C, Wu Z H, Gao S M, Dai T G, Yu H, Tsang H K 2018 Laser Photonics Rev. 12 1700109.
[12] He Y, Li X F, Zhang Y, An S H, Wang H W, Wang Z, Chen H S, Huang Y T, Huang H Z, Fontaine N K, Ryf R, Du Y H, Sun L, Ji X C, Guo X H, Song Y X, Zhang Q W, Su Y K 2023 Adv. Photonics 5 111.
[13] Ma H S, Du T, Jiang X P, Zhang Z J, He X, Chen H, Yu Y, Zhang Z F, Han Y X, Yang J B, Peng Y X 2025 Photonic Sensors 15 1.
[14] Huang J, Ma H S, Chen D B, Yuan H, Zhang J P, Li Z K, Han J M, Wu J G, Yang J B 2021 Nanophotonics 10 1011.
[15] Jiang X P, Yuan H, Chen D B, Zhang Z J, Du T, Ma H S, Yang J B 2021 Adv. Opt. Materi. 9 2100575.
[16] Shen R Y, Hu F C, Hong B Z, Wang X, Sun A L, Zhang J W, Zhao H B, Chi N, Chu W, Cai H W, Huang W P 2024 Photonics Res. 12 2891.
[17] Qiao X, Li Y H, Liu Y J, Zang Z G, Xu K 2025 ACS Photonics 12 3256.
[18] Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378.
[19] Ma H S, Yang J B, Zhang Z J, Huang J, Zhang K W 2021 Results Phys. 26 104384.
[20] Chang W J, Lu L L Z, Ren X S, Li D Y, Pan Z P, Cheng M F, Liu D M, Zhang M M 2018 Photonics Res. 6 660.
[21] Ma H S, Luo M Y, He J, Du T, Zhang Z J, Jiang X P, He X, Fang L, Yang J B 2022 J. Lightwave Technol. 40 7869.
[22] Liu Y J, Wang Z, Liu Y L, Wang X, Guo X Y, Li D L, Yao Y, Song Q H, Du J B, He Z Y, Xu K 2021 J. Lightwave Technol. 39 5925.
[23] Xie H C, Liu Y J, Wang S, Wang Y J, Yao Y, Song Q H, Du J B, He Z Y, Xu K 2020 IEEE Photonic. Tech. L. 32 169.
[24] Dai D X, Wang J, Shi Y C 2013 Opt. Lett. 38 1422.
[25] Yi Q Y, Yan Z W, Xing S Z, Cheng G L, Sun A L, Deng X Y, Zheng Z, Zhang J W, Chi N, Shen L 2024 J. Lightwave Technol. 42 8840.
[26] Chen W W, Lin J, Li H X, Wang P J, Dai S X, Liu Y X, Yao R K, Li J, Fu Q, Dai T G, Yang J Y 2022 Opt. Express 30 46236.
计量
- 文章访问数: 20
- PDF下载量: 1
- 被引次数: 0








下载: