搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过关键参数调控Heliotron J装置中高能粒子驱动的不稳定性

钟瑶 长崎百伸 陈嘉宏 陈坚 王志斌

引用本文:
Citation:

通过关键参数调控Heliotron J装置中高能粒子驱动的不稳定性

钟瑶, 长崎百伸, 陈嘉宏, 陈坚, 王志斌

Energetic-particle-driven MHD instability in Heliotron J adjusted via key plasma parameter

ZHONG Yao, NAGASAKI Kazunobu, CHEN Jiahong, CHEN Jian, WANG Zhibin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 高能粒子(energetic particles, EP)驱动的不稳定性及其调控规律, 是受控核聚变研究中亟需解决的关键科学问题之一. 本文以京都大学Heliotron J装置为实验平台, 系统研究了电子回旋加热(electron cyclotron heating, ECH)对EP驱动不稳定性的影响. 研究采用实验诊断与数值模拟相结合的方式, 揭示了典型等离子体参数在不稳定性激发与抑制中的作用机制, 以及磁场位型和等离子体参数耦合作用在ECH加热系统影响不稳定性中发挥的作用. 文章通过FAR3D程序分析了随着ECH功率的变化, 高能离子比压、热比压、电子温度以及电阻率对模态驱动和阻尼过程的影响规律. 模拟结果与实验观测在模数和径向结构上高度一致, 证实了快粒子比压对增长率的敏感性, 以及电子温度对朗道阻尼和连续谱阻尼的增强效应. 模拟结果表明有限Larmor半径(FLR)效应和高能离子减速时间的改变同样在模态演化中发挥重要作用. 研究结果不仅为理解不同磁场位型下ECH加热系统对不稳定性的差异化作用提供了物理依据, 也为未来螺旋器/仿星器类装置中优化加热方式、提升等离子体运行稳定性提供了重要参考.
    A large number of energetic particles (EPs) are generated in the heating process to obtain the high temperature plasma for fusion research. These EPs can resonantly excite various magnetohydrodynamic (MHD) instabilities, including the Alfvén eigenmodes (AEs) and the energetic particle modes (EPMs). The excitation of such MHD instabilities can lead to significant EP losses, which not only degrades the plasma confinement and heating efficiency, but also results in excessive heat loads and damage to plasma-facing components. In this work, the influences of key plasma parameters on the excitation and damping effect of EP-driven MHD instabilities in Heliotron J device are investigated for better understanding of the excitation and transport mechanism of EPs driven MHD in specific device, which is meaningful for achieving stable plasma operation in future fusion devices with different heating methods. In this work, the typical EPs driven MHD instabilities are observed using various diagnostic methods, such as magnetic probes, beam emission spectroscopy (BES), electron cyclotron resonance (ECE) radiometers, and interferometers. Combined with the simulation results from STELLGAP and FAR3D programs, the modulus, radial distribution, and spectral characteristics of different instabilities are analyzed in depth, revealing the evolutions of AEs and EPMs in the Heliotron J device under typical heating conditions. This study quantitatively reveals the driving and suppressing mechanisms of EP-driven instabilities by the electron density (ne), the electron temperature (Te), and the energetic/thermal particle specific pressure (βf/βth) in Heliotron J device, under the conditions of different electron cyclotron resonance heating (ECH) and neutral beam injection (NBI). The results show that different characteristics are obtained under the different magnetic field geometry conditions. The results show that an increase in electron density can reduce the instability intensity by about 40%–60%, and an increase in the specific pressure of energetic particles can double the modal growth rate, while an increase in the specific pressure of hot particles has an inhibitory effect of 20%–50% on the growth rate of the low order modes. These findings are useful for understanding the different effects of ECH and NBI on the EPs driven MHD instabilities, and they are also helpful for achieving stable operation by adjusting the heating system parameters in the stellarator-like devices in the future.
  • 图 1  FAR3D程序中(a)密度、(b)温度及(c)温度剖面的平衡参数设置

    Fig. 1.  Parameter settings in the FAR3D code: (a) Plasma density; (b) temperature; (c) temperature profile.

    图 2  STELLGAP代码中等离子体电流剖面参数设计

    Fig. 2.  Plasma current profile parameter design in STELLGAP code.

    图 3  Heliotron J实验装置图和设计图[22,23]

    Fig. 3.  Overview and structural diagram of Heliotron J device[22,23].

    图 4  (a) 主导模态n/m = 2/4和n/m = 2/3的本征函数幅值空间分布计算结果; (b) 实验中模态相对强度与径向归一化坐标的关系

    Fig. 4.  (a) Eigenfunction of the dominant mode of n/m = 2/4 and n/m = 2/3 mode; (b) radial profiles of mode relative intensities from experiments.

    图 5  在Heliotron J装置中剪切阿尔芬连续谱在Ip = 0 (a)和Ip = 2.0 kA (b)下的MHD平衡状态下的表现

    Fig. 5.  Shear Alfvén continuum structure in MHD equilibrium at Ip = 0 (a) and Ip = 2.0 kA (b) in Heliotron J.

    图 6  在高ECH条件下, 不同电子密度下功率谱密度的时间演化(a)—(d)及不稳定性强度随电子密度的变化(e)

    Fig. 6.  Time evolution of the power spectral density at different electron densities (a)–(d) and the variation of instability intensity with electron density (e) at high ECH situation.

    图 7  在3种磁场位型下, 随着快粒子比压(βf)的变化 (a), (d) n/m = 1/2模的增长率和频率; (b), (e) n/m = 2/3模的增长率和频率; (c), (f) n/m = 2/4模的增长率和频率

    Fig. 7.  Under three magnetic field configurations, with the change of the fast particle beta (βf): (a), (d) Growth rate and the frequency of the n/m = 1/2; (b), (e) growth rate and the frequency of the n/m = 2/3; (c), (f) growth rate and the frequency of the n/m = 2/4 mode.

    图 8  n/m = 1/2, n/m = 2和n/m = 2/3模在3种磁场构型下, 随着热粒子比压(βth)增大的增长率与频率的变化情况 (a), (d) LB; (b), (e) MB; (c), (f) HB

    Fig. 8.  Growth rate (γ) and the frequency (f) of the n/m = 1/2, n/m = 2/4, and n/m = 2/3 mode in the three configurations with the change of thermal particle beta (βth): (a), (d) LB; (b), (e) MB; (c), (f) HB

    表 1  两种数值模拟程序的对比分析[1419]

    Table 1.  Comparison of two numerical simulation methods[1419].

    内容FAR3DSTELLGAP
    目标模拟模式的时域演化、增长率、结构,
    适用于AE、不稳定性分析等
    分析阿尔芬连续谱结构, 识别频率gap,
    判断是否支持共振模式(如TAE)目标
    输入要求VMEC平衡态+粒子参数等仅需VMEC平衡态
    物理机制包括电阻、Landau阻尼、Geodesic acoustic waves、波-粒共振等不含耗散机制, 仅考虑MHD连续谱结构
    下载: 导出CSV

    表 2  加热过程影响的关键等离子体参数表

    Table 2.  Critical plasma parameters modified during heating.

    等离子体参数 直接影响的物理量 作用效果
    电子密度 热比压(βth),
    等离子体压强(Pe)
    电子密度升高会通过降低快粒子相对压强(βf/βth)、增强碰撞与Landau阻尼、改变
    阿尔芬速度与共振条件等间接途径增强阻尼, 有助于抑制高能粒子驱动的不稳定性
    电子温度 粒子慢化时间(τ),
    快粒子比压(βf)
    双重作用: 降低βf有助于抑制模态激发(增加稳定性),
    削弱阻尼可能提升模态增长率(降低稳定性)
    下载: 导出CSV
    Baidu
  • [1]

    孙有文, 仇志勇, 万宝年 2024 73 175202Google Scholar

    Sun Y W, Qiu Z Y, Wan B N 2024 Acta Phys. Sin. 73 175202Google Scholar

    [2]

    黄捷, 李沫杉, 覃程, 王先驱 2022 71 185202Google Scholar

    Huang J, Li M S, Qin C, Wang X Q, 2022 Acta Phys. Sin. 71 185202Google Scholar

    [3]

    苏祥, 王先驱, 符添, 许宇鸿 2023 72 215205Google Scholar

    Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Phys. Sin. 72 215205Google Scholar

    [4]

    罗耀全, 王龙, 杨思泽, 陈雁萍, 戚霞枝, 李赞良, 王文书, 李文莱, 赵华, 唐继辉, 谭富传 1990 39 399Google Scholar

    Luo Y Q, Wang L, Yang S Z, Chen Y P, Qi X Z, Li Z L, Wang W S, Li W L, Zhao H, Tang J H, Tan F C 1990 Acta Phys. Sin. 39 399Google Scholar

    [5]

    石秉仁 1999 磁约束聚变原理与实践(北京: 原子能出版社)pp192—197

    Shi B R 1999 Principles and Practice of Magnetic Confinement Fusion (Beijing: Atomic Energy Press) pp192–197

    [6]

    张伟, 张新军, 刘鲁南, 朱光辉, 杨桦, 张华朋, 郑艺峰, 何开洋, 黄娟 2023 72 215201Google Scholar

    Zhang W, Zhang X J, Liu L N, Zhu G H, Yang H, Zhang H P, Zheng Y F, He K Y, Huang J 2023 Acta Phys. Sin. 72 215201Google Scholar

    [7]

    Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A 2011 Plasma Phys. Contr. Fusion 53 024008Google Scholar

    [8]

    Breizman B N, Sharapov S E 2011 Plasma Phys. Contr. Fusion 53 054001Google Scholar

    [9]

    Yamamoto S, Nagasaki K, Kobayashi S, Nagaoka K, Cappa A, Okada H, Minami T, Kado S, Ohshima S, Konoshima S, Nakamura Y, Ishizawa A, Weir G M, Kenmochi N, Ohtani Y, Lu X, Tawada Y, Kokubu D, Mizuuchi T 2017 Nucl. Fusion 57 126065Google Scholar

    [10]

    Yamamoto S, Nagasaki K, Nagaoka K , Watanabe K Y, Spong D A, Garcia L, Cappa A 2020 Nucl. Fusion 60 066018

    [11]

    Nagaoka K, Ido T, Ascasibar E, Estrada T, Yamamoto S, Melnikov A V, Cappa A, Hidalgo C, Pedrosa M A, van Milligen B P, Pastor I, Liniers M, Ochando M A, Shimizu A, Eliseev L G, Ohshima S, Mukai K, Takeiri Y 2013 Nucl. Fusion 53 072004Google Scholar

    [12]

    Spong D A, Sanchez R, Weller A 2003 Phys. Plasmas 10 3217Google Scholar

    [13]

    Jiang X H, Li S, Liu Y, Wang S, Jia F, Wang T, Han L, Zhang X 2024 Proceedings of the AAAI Conference on Artificial Intelligence Vancouver, BC, February 22–25, 2024 p2561

    [14]

    Charlton L A, Holmes J A, Hicks H R, Lynch V E, Carreras B A 1986 J. Comput. Phys. 63 107Google Scholar

    [15]

    Spong D A 2013 Nucl. Fusion 53 053008Google Scholar

    [16]

    Taimourzadeh S, Spong D A, Todo Y, García L, Sánchez E, Carreras B A, Izacard O 2019 Phys. Plasmas 26 122507

    [17]

    Varela J, Spong D, Garcia L, Ghai Y, Ortiz J 2024 Front. Phys. 12 1422411Google Scholar

    [18]

    Weller A, Spong D A, Jaenicke R, Lazaros A, Penningsfeld F P, Sattler S 1994 Phys. Rev. Lett. 72 1220Google Scholar

    [19]

    Eliseev L G, Melnikov A V, Ascasíbar E, Cappa A, Drabinskiy M, Hidalgo C, Khabanov P O, Kharchev N K, Kozachek A S, Liniers M, Lysenko S E, Ochando M de Pablos J L, Pastor I, Sharapov S E, Spong D A, Breizman B N, Varela J 2021 Phys. Plasmas 28 072510Google Scholar

    [20]

    Mizuuchi T, Nakasuga M, Sano F, Nakamura Y, Kondo K, Okada H, Nagasaki K, Besshou S, Wakatani M, Obiki T 1999 Proceedings of the 12th International Stellarator Workshop Madison, USA, September 6–10, 1999 p192

    [21]

    Obiki T, Mizuuchi T, Nagasaki K, Okada H, Besshou S, Sano F, Hanatani K, Liu Y, Hamada T, Manabe Y, Shidara H, Ang W, Liu Y, Ikeda Y, Kawazome Y, Kobayashi T, Takamiya T, Takeda M, Ijiri Y, Senju T, Yaguchi K, Sakamoto K, Toshi K 2001 Nucl. Fusion 41 833Google Scholar

    [22]

    Kobayashi S, Nagaoka K, Yamamoto S, Mizuuchi T, Nagasaki K, Okada H, Minami T, Murakami S, Lee H, Suzuki Y, Nakamura Y, Takeiri Y, Yokoyama M, Hanatani K, Hosaka K, Konoshima S, Ohshima S, Toushi K, Sano F 2010 Contrib. Plasm. Phys. 50 534Google Scholar

    [23]

    Zhong Y, Nagasaki K, Wang Z, Kobayashi S, Inagaki S, Minami T, Kado S, Ohshima S, Kin F, Wang C, Nakamura Y, Konoshima S, Mizuuchi T, Okada H, Marushchenko N, Chen J 2024 Plasm. Fusion Res. 19 1202008Google Scholar

    [24]

    Nagasaki K, Yamamoto S, Kobayashi S, Sakamoto K, Nagae Y, Sugimoto Y, Nakamura Y, Weir G M, Marushchenko N, Mizuuchi T, Okada H, Minami T, Masuda K, Ohshima S, Konoshima S, Shi N, Nakamura Y, Lee H Y, Zang L, Arai S, Watada H, Fukushima H, Hashimoto K, Kenmochi N, Motojima G, Yoshimura Y, Mukai K, Volpe F, Estrada T, Sano F 2013 Nucl. Fusion 53 113041Google Scholar

    [25]

    Heidbrink W W 2008 Phys. Plasmas 15 055501Google Scholar

  • [1] 胡莹欣, 赵开君, 李继全, 严龙文, 许健强, 黄治辉, 余德良, 谢耀禹, 丁肖冠, 温思宇. HL-2A托卡马克电子回旋共振加热调制对湍流驱动和传播的影响.  , doi: 10.7498/aps.74.20241263
    [2] 兰恒, 李嘉栋, 曹宇豪, 沈军峰, 李嘉诚, 许宇鸿, 孙腾飞, 何梦圆, 冯宇轩, 吴丹妮, 程钧, 刘海峰, SHIMIZUAkihiro, 王先驱, 宣伟民, 张美勇, 邹千, 罗珺, 杨权, 张欣, 刘海, 黄捷, 胡军, 邵俊仁, 李伟, 栗钰彩, 周红, 王捷, 苏祥, 唐昌建. CFQS-T准环对称仿星器高频磁探针阵列诊断的研制及初步应用.  , doi: 10.7498/aps.74.20250957
    [3] 李丹, 刘海峰. 中国首台准环对称仿星器中线圈形变对磁拓扑结构的影响.  , doi: 10.7498/aps.74.20241606
    [4] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟.  , doi: 10.7498/aps.73.20240612
    [5] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究.  , doi: 10.7498/aps.73.20240017
    [6] 苏祥, 王先驱, 符添, 许宇鸿. CFQS准环对称仿星器低$\boldsymbol \beta$等离子体中三维磁岛的抑制机制.  , doi: 10.7498/aps.72.20230546
    [7] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理.  , doi: 10.7498/aps.72.20230719
    [8] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究.  , doi: 10.7498/aps.72.20230696
    [9] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为.  , doi: 10.7498/aps.72.20230726
    [10] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究.  , doi: 10.7498/aps.72.20230794
    [11] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建.  , doi: 10.7498/aps.72.20230681
    [12] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述.  , doi: 10.7498/aps.72.20230721
    [13] 黄捷, 李沫杉, 覃程, 王先驱. 中国首台准环对称仿星器中离子温度梯度模的模拟研究.  , doi: 10.7498/aps.71.20220729
    [14] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究.  , doi: 10.7498/aps.68.20191122
    [15] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究.  , doi: 10.7498/aps.64.215202
    [16] 刘睿, 李宏福, 牛新建. 回旋管谐振腔本征模式计算的新算法.  , doi: 10.7498/aps.60.090205
    [17] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , doi: 10.7498/aps.59.8701
    [18] 张介秋, 梁昌洪, 王耕国, 朱家珍. 阿尔芬高斯波包演化为阿尔芬孤波的条件及阿尔芬波的调制不稳定性判据.  , doi: 10.7498/aps.52.890
    [19] 王世庆, 金亚秋. 电子回旋共振加热情形锯齿振荡的数值分析.  , doi: 10.7498/aps.50.1737
    [20] 汪茂泉, 詹如娟. 用电子迴旋共振加热抑制托卡马克中的撕裂模.  , doi: 10.7498/aps.35.1233
计量
  • 文章访问数:  391
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-31
  • 修回日期:  2025-09-28
  • 上网日期:  2025-10-15

/

返回文章
返回
Baidu
map