搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

米量级宽幅间接介质阻挡放电等离子体产生及放电特性

李龙 崔行磊 祝曦 方志

引用本文:
Citation:

米量级宽幅间接介质阻挡放电等离子体产生及放电特性

李龙, 崔行磊, 祝曦, 方志

Generation and discharge characteristics of indirect DBD with meter-scale width

LI Long, CUI Xinglei, ZHU Xi, FANG Zhi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文报道了一种新型米量级宽幅间接介质阻挡放电(DBD), 用于满足大尺度、形状复杂材料的处理需求. 通过模块化分级气路设计与仿真优化, 提高放电区域及被处理材料表面流场分布均匀性. 在此基础上, 以Ar作为工作气体, 以六甲基二硅烷(HMDSO)为反应媒质, 在纳秒脉冲电源激励下产生米量级宽幅等离子体. 通过电学、光谱、温度诊断方法来评估不同运行条件参数下的粒子活性、放电均匀性和稳定性, 并对环氧材料改性, 通过水接触角测量验证改性效果及其均匀性. 结果表明, 在合适的运行条件参数下, 可产生尺寸为1120 mm的宽幅均匀稳定等离子体. 增大电压幅值使放电强度和粒子活性提升, 但放电均匀性和稳定性会显著降低; 增大工作气体流速虽可同时提升粒子活性、放电均匀性和稳定性, 但提升幅度较小. 在电压幅值为12 kV、工作气体流速为10 L/min条件下处理10 min后, 环氧(EP)材料表面的水接触角从67°均匀提升至144°, 波动幅度低于6%. 本文所报道的米量级宽幅间接DBD电极可为大尺度等离子体材料改性技术工业应用提供参考和依据.
    A meter-scale wide indirect dielectric barrier discharge (DBD) for treating large-scale and irregular-shaped materials is reported in this study. The structure of the modular-graded gas path is designed, and the influence of gas hole density on the flow field is simulated. It is confirmed that 8 subdividing (40 holes uniformly distributed) structure can effectively improve the uniformity of the gas flow rate distribution in the discharge area and on the treated material surface compared with 0 subdividing structure. Based on this structure, Ar is employed as the discharge gas and hexamethyldisilane as the precursor to generate meter-scale wide plasma under the excitation of a nanosecond pulsed power supply. Particle activity, discharge uniformity and stability under different operating parameters are evaluated by measuring voltage-current waveforms, emission spectra, luminescence images and temperatures at different electrode positions. The treatment effect and uniformity are verified by measuring the water contact angle (WCA) of epoxy (EP) material. The results show that a uniform and stable plasma with a width of 1120 mm is generated under suitable operating parameters. By increasing the voltage amplitude, both the discharge intensity and particle activity are improved, while the discharge uniformity and stability are significantly reduced. By increasing the discharge gas flow rate, the particle activity, discharge uniformity, and stability can be improved simultaneously but slightly. The WCA on the EP surface is uniformly increased from 67° to 144° with a variation of less than 6% after 10-min treatment at a voltage amplitude of 12 kV and a discharge gas flow rate of 10 L/min. The meter-scale wide indirect DBD electrode in this work can provide reference and basis for the industrial application of large-scale plasma material modification technology.
  • 图 1  米量级宽幅间接DBD电极结构设计 (a) 电极示意图; (b) 电极实物图

    Fig. 1.  Structural design of the meter-scale wide indirect DBD: (a) Schematic diagram; (b) photo of the electrode.

    图 2  米量级宽幅间接DBD电极流场仿真 (a) 不同结构下工作气体流速的流线; (b), (c) 不同结构下处理材料表面流速分布; (d) 不同工作气体流速下的放电区域和材料表面流速分布

    Fig. 2.  Flow field simulation of the meter-scale wide indirect DBD: (a) Ar flow streamlines of gas flow rate under different structures; (b), (c) flow rate distributions on the treated material surface for different structures; (d) flow rate distributions in the discharge region and on the material surface for different total gas flow rates.

    图 3  实验平台示意图

    Fig. 3.  Schematic diagram of the experiment platform.

    图 4  典型电压电流波形

    Fig. 4.  Typical voltage-current waveforms.

    图 5  不同条件下的电流幅值均值和标准差 (a) 不同电压幅值; (b) 工作气体流速

    Fig. 5.  Mean value and standard deviation of current amplitude under various conditions: (a) Voltage amplitude; (b) gas flow rates.

    图 6  典型放电的发光图像

    Fig. 6.  Luminescence image of typical discharge.

    图 7  不同电压幅值和工作气体流速下的DBD放电图像

    Fig. 7.  Discharge images of DBD at different voltage amplitudes and gas flow rates.

    图 8  典型发射光谱

    Fig. 8.  Typical emission spectra.

    图 9  放电区域内电场分布

    Fig. 9.  Electric field in the discharge area.

    图 10  不同条件下的Ar(763.51)光谱强度 (a) 电压幅值; (b) 工作气体流速

    Fig. 10.  Ar(763.51) intensity under different conditions: (a) Voltage amplitude; (b) gas flow rate.

    图 11  不同放电时间下不同位置的温度 (a) 2 min; (b) 10 min; (c) 温升曲线

    Fig. 11.  Temperatures at different positions for different discharge durations: (a) 2 min; (b) 10 min; (c) electrode temperature rise.

    图 12  不同条件下电极温度 (a) 电压幅值; (b) 工作气体流速

    Fig. 12.  Electrode temperatures under different conditions: (a) Voltage amplitude; (b) gas flow rates.

    图 13  不同条件下改性后WCA变化 (a) 不同位置; (b) 不同电压幅值; (c) 不同工作气体流速; (d) WCA与电流幅值; (e) WCA标准差与GVSD

    Fig. 13.  WCA under different conditions: (a) Different positions; (a) voltage amplitude; (b) gas flow rates; (d) WCA and current amplitude; (e) WCA standard deviation and GVSD.

    Baidu
  • [1]

    Jaiswal M, Srivastava B 2025 Postharvest Biol. Technol. 229 113681Google Scholar

    [2]

    Wirth P, Oberste-Beulmann C, Nitsche T, Muhler M, Awakowicz P 2024 Chem. Ing. Tech. 96 1237Google Scholar

    [3]

    Arora G, Hoffer P, Prukner V, Bílek P, Šimek M 2024 Plasma Sources Sci. Technol. 33 025025Google Scholar

    [4]

    徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁 2021 70 099401Google Scholar

    Xu Y, Wang Z L, Qin S C, Zhang Y, He T, Guo Y, Ding L, Zhang Y R, Yang W, Shi J J, Du C R, Zhang J 2021 Acta Phys. Sin. 70 099401Google Scholar

    [5]

    Yi T C, Sun C L, Dong J C, Han D D, Bao L, Wang Z W, Cai Y M, Zhang X 2025 IEEE Electron. Device Lett. 46 757Google Scholar

    [6]

    Pernica R, Klima M, Fiala P 2024 Meas. Sci. Rev. 24 215Google Scholar

    [7]

    李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 62 165205Google Scholar

    Li X C, Chang Y Y, Liu R P, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205Google Scholar

    [8]

    Sony F L, Li F, Zhu M D, Wang L, Gong H, Gan Y Q, Jin X 2017 Plasma Sci. Technol. 20 014013

    [9]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. T. 27 115005Google Scholar

    [10]

    Zhu X, Li F S, Guan X H, Xu J G, Cui X L, Huang J L, Liu F, Fang Z 2022 Eur. Polym. J. 181 111656Google Scholar

    [11]

    Zeniou A, Puač N, Škoro N, Selaković N, Dimitrakellis P, Gogolides E, Petrović Z L 2017 J. Phys. D: Appl. Phys. 50 135204Google Scholar

    [12]

    Hasan M I, Walsh J L 2017 Appl. Phys. Lett. 110 134102Google Scholar

    [13]

    Rhouma S, Megriche A, Souidi E, Said S, Autret-Lambert C 2025 J. Mater. Sci. Mater. 36 1Google Scholar

    [14]

    王江琼, 李维康, 张文业, 万宝全, 查俊伟 2024 73 078801Google Scholar

    Wang H Q, Li W K, Zhang W Y, Wang B Q, Cha J W 2024 Acta Phys. Sin. 73 078801Google Scholar

    [15]

    Resner L, Lesiak P, Taraghi I, Kochmanska A, Figiel P, Piesowicz E, Zenker M, Paszkiewicz S 2022 Polymers. 14 3444Google Scholar

    [16]

    Peters F, Hünnekens B, Wieneke S, Militz H, Ohms G, Viöl W 2017 J. Phys. D: Appl. Phys. 50 475206Google Scholar

    [17]

    韩国新, 武珈存, 贾焓潇, 王雪芳, 贾鹏英 2023 河北大学学报 43 369

    Han G X, Wu J C, Jia Y X, Wang X F, Jia P Y 2023 J. Hebei Univ. 43 369

    [18]

    Stancu E C, Ionita M D, Ionita E R, Teodorescu M, Radu M T, Dinescu G 2018 Rom. J. Phys. 63 705

    [19]

    Kang W S, Kim H S, Hong S H 2010 Thin Solid Films 518 6578Google Scholar

    [20]

    Portugal S, Choudhury B , Cardenas D 2022 Front. Phys. 10 797

    [21]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [22]

    田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞 2025 74 115202Google Scholar

    Tian S, Zhang H, Zhang X, Zhang X X, Li X C, Li Q, Ran J X 2025 Acta Phys. Sin. 74 115202Google Scholar

    [23]

    Zhang C, Huang B D, Luo Z B, Che X K, Yan P, Shao T 2019 Plasma Sources Sci. Technol. 28 064001Google Scholar

    [24]

    Neretti G, Popoli A, Scaltriti S G, Cristofolini A 2022 Electronics 11 1536Google Scholar

    [25]

    Alves L L, Bogaerts A, Guerra V, Turner M M 2018 Plasma Sources Sci. Technol. 27 023002Google Scholar

    [26]

    Pourali N, Sarafraz M M, Hessel V, Rebrov E V 2021 Phys. Plasmas 28 013502Google Scholar

    [27]

    Xu Z, Pillai K M 2016 Numer. Heat Tr. A-Appl. 70 1213Google Scholar

    [28]

    Zhu X, Guan X H, Luo Z R, Wang L Y, Dai L Y, Wu Z X, Fang Z J, Cui X L, Akram X, Fang Z 2024 J. Phys. D Appl. Phys. 57 275203Google Scholar

    [29]

    Zhang J L, Sun J, Wang D Z, Wang X G 2006 Thin Solid Films 506 404

    [30]

    张龙龙, 崔行磊, 刘峰, 方志 2021 电工技术学报 36 3135

    Zhang L L, Cui X, Liu F, Fang Z 2021 Trans. China Electrotechn. Soc. 36 3135

    [31]

    Chen Z C, Cheng Y, Lin C C, Li C S, Hsu C C, Chen J Z, Cheng I C 2019 Appl. Surf. Sci. 473 468Google Scholar

    [32]

    Deng X T, Kong M G 2004 IEEE Trans. Plasma Sci. 32 1709Google Scholar

    [33]

    Liu F, Chu H J, Zhuang Y, Fang Z, Zhou R W, Cullen P J, Ostrikov K K 2021 J. Appl. Phys. 129 033302Google Scholar

    [34]

    Zhou W H, Zhang D, Duan X, Zhu X, Liu F, Fang Z 2024 Plasma Sci Techno. 26 094008Google Scholar

    [35]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [36]

    Yambe K, Taka S, Ogura K 2014 IEEJ Trans. Electr. Electron. Eng. 9 S13

    [37]

    Li J Z, Xu J G, Liu F, Fang Z 2022 IEEE Trans. Plasma Sci. 50 1823Google Scholar

    [38]

    Jin S B, Lee J S, Choi Y S, Choi I S, Han J G 2011 Thin Solid Films 519 6334Google Scholar

    [39]

    Zhang X Y, Chen L, Guan T Y, Wang B H, Wang S A, Yang H Y, Song P 2024 Phys. Scr. 99 025606Google Scholar

    [40]

    Uchida G, Nakajima A, Takenaka K, Koga K, Shiratani M, Setsuhara Y 2015 IEEE Trans. Plasma Sci. 43 4081Google Scholar

    [41]

    邵先军, 张冠军, 詹江杨, 李娅西, 张增辉, 彭兆裕 2011 高电压技术 37 1499

    Shao X J, Zhang G J, Zhan J Y 2011 High Volt. Eng. 37 1499

    [42]

    Demirskyi D, Sepehri-Amin H, Vasylkiv O O 2025 Int. J. Appl. Ceram. Tec. 22 e14967.Google Scholar

    [43]

    Cui X L, Li L, Xu Z B, Zhu X, Akram S, Fang Z 2024 J. Vac. Sci. Technol. A 42 043005Google Scholar

    [44]

    Liang F W, Luo H H, Zhuang W J, Liang Z D, Fan X H, Chen S, Sun Q Q 2025 J. Phys. D Appl. Phys. 58 185501Google Scholar

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断.  , doi: 10.7498/aps.74.20250111
    [2] 李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳. 条纹水电极介质阻挡放电中D2h超点阵斑图.  , doi: 10.7498/aps.74.20250985
    [3] 马乂辰, 王语菲, 王婷婷, 曹亚文, 李正清, 谭畅. 填充床介质阻挡放电火星CO2放电特性.  , doi: 10.7498/aps.74.20251061
    [4] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法.  , doi: 10.7498/aps.72.20230680
    [5] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构.  , doi: 10.7498/aps.71.20220086
    [6] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , doi: 10.7498/aps.70.20210294
    [7] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展.  , doi: 10.7498/aps.70.20210077
    [8] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响.  , doi: 10.7498/aps.65.104704
    [9] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性.  , doi: 10.7498/aps.65.185202
    [10] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究.  , doi: 10.7498/aps.60.025216
    [11] 鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国. 真空背压对霍尔推力器放电特性影响的实验研究.  , doi: 10.7498/aps.59.8676
    [12] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究.  , doi: 10.7498/aps.59.7182
    [13] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究.  , doi: 10.7498/aps.59.5613
    [14] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究.  , doi: 10.7498/aps.58.2535
    [15] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响.  , doi: 10.7498/aps.57.1802
    [16] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性.  , doi: 10.7498/aps.57.1001
    [17] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究.  , doi: 10.7498/aps.55.5923
    [18] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究.  , doi: 10.7498/aps.55.5969
    [19] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究.  , doi: 10.7498/aps.54.3268
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程.  , doi: 10.7498/aps.52.929
计量
  • 文章访问数:  374
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-28
  • 修回日期:  2025-09-16
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map