搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无电容器嵌入的忆阻神经元电路的动力学与能耗分析

郭群 徐莹

引用本文:
Citation:

无电容器嵌入的忆阻神经元电路的动力学与能耗分析

郭群, 徐莹

Analysis of dynamics and energy consumption in capacitor-free memristive neural circuit

GUO Qun, XU Ying
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 神经形态计算的硬件实现, 正从传统架构转向对生物神经元内在物理机制的更精细模拟. 聚焦于电场-磁场能量交换这一核心过程, 本文提出一种基于荷控忆阻器的无电容嵌入式神经元电路设计方法. 通过构建无量纲动力学方程并采用雅可比矩阵特征值分析, 验证了该模型的稳定性特征. 研究结果表明, 该模型不仅可通过外界刺激、反转电位及离子通道导通性等参数灵活调控神经元放电模式, 还展现出良好的噪声鲁棒性与能量效率. 进一步通过电阻参数优化策略, 使电路能耗得到显著控制. 本文可为发展高集成度、低能耗的下一代神经形态计算电路提供理论支撑与设计参考.
    To address the issues of high dynamic power consumption and substantial occupation of silicon integration resources in traditional capacitor-containing neuronal circuits, this study proposes a capacitor-free neuronal circuit based on a charge-controlled memristor. By taking the intrinsic parameters of the charge-controlled memristor as the reference for scaling transformation, dimensionless dynamical equations are derived. The local asymptotic stability of the system is verified using Jacobian matrix eigenvalue decomposition and the Routh-Hurwitz criterion. Gaussian white noise is introduced to simulate the interference for detecting coherent resonance, while energy characteristics are analyzed by combining Hamiltonian energy formulas and resistance energy consumption expressions. Additionally, the fourth-order Runge-Kutta method is adopted to conduct numerical simulations.The research results indicate that external stimulus, ionic channel conductance, and reversal potential can flexibly regulate the periodic/chaotic firing modes of the neuron. In the periodic state, the proportion of electric field energy of the charge-controlled memristor in the total energy is higher; in the chaotic state, however, the proportion of magnetic field energy of the inductive coils increases. The circuit exhibits coherent resonance under the influence of noise, and resistor is the main energy-consuming component. The conclusion proves that the circuit is feasible in principle, with rich dynamical characteristics and good noise robustness. Adjusting the resistance value can enhance energy efficiency while preserving multiple firing modes, thereby providing theoretical support and optimization direction for designing high-integration, low-power neuromorphic computing circuits.
  • 图 1  无电容嵌入式忆阻神经元电路示意图. M(q)表示荷控忆阻器, L1, L2表示感应线圈, E1, E2表示恒定电压源, R1, R2, R3表示恒定电阻

    Fig. 1.  Schematic diagram of the capacitor-free embedded memristive neural circuit. M(q) denotes the charge-controlled memristor, L1 and L2 denote inductive coils, E1 and E2 denote constant voltage sources, and R1, R2, and R3 denote constant resistors.

    图 2  变量x的峰值xpeak和系统最大Lyapunov指数关于激励频率ω的分岔图

    Fig. 2.  Bifurcation diagram of the peak value xpeak of variable x and the maximum Lyapunov exponent of the system versus the excitation frequency ω.

    图 3  不同激励频率ω下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) ω = 0.233; (b1)—(b3) ω = 0.857

    Fig. 3.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different excitation frequencies ω: (a1)–(a3) ω = 0.233; (b1)–(b3) ω = 0.857.

    图 4  变量x的峰值xpeak和系统最大Lyapunov指数关于参数A的分岔图

    Fig. 4.  Bifurcation diagram of the peak value xpeak of variable x and the maximum Lyapunov exponent of the system versus parameter A.

    图 5  不同激励幅值A下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) A = 3.623, (b1)—(b3) A = 3.77

    Fig. 5.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different parameter A: (a1)–(a3) A = 3.623; (b1)–(b3) A = 3.77.

    图 6  变量x的峰值xpeak和能量平均值$ \left\langle H\right\rangle $随参数a变化的依赖关系曲线

    Fig. 6.  Bifurcation diagram of the peak value xpeak of variable x and average energy $ \left\langle H\right\rangle $versus parameter a.

    图 7  不同参数a下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) a = 0.579; (b1)—(b3) a = 0.56

    Fig. 7.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different parameter a: (a1)–(a3) a = 0.579; (b1)–(b3) a = 0.56

    图 8  变量x的峰值xpeak和能量平均值$ \left\langle H\right\rangle $随参数b变化的依赖关系曲线

    Fig. 8.  Bifurcation diagram of the peak value xpeak and average energy $ \left\langle H\right\rangle $ of variable x versus parameter b.

    图 9  不同参数b下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) b = 0.991; (b1)—(b3) b = 0.928

    Fig. 9.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different parameter b: (a1)–(a3) b = 0.991; (b1)–(b3) b = 0.928.

    图 10  不同放电模式对应的磁场能量和电场能量占总哈密顿能量的比值  (a) 周期态b = 0.991;  (b) 混沌态b = 0.928

    Fig. 10.  Ratios of magnetic field energy and electric field energy to the total Hamilton energy corresponding to different discharge patterns: (a) Periodic state, b = 0.991; (b) chaotic state, b = 0.928.

    图 11  参数a依据方程(23)的能量自适应调节模式进行演化时, 不同阈值ε下(a1), (a2) u, (b1), (b2) y的时序图; (c1), (c2)哈密顿能量H和(d1), (d2)参数a随时间的演化曲线. 参考实际能量值对ε直接取值(a) ε1 = 262.7, σ1 = 0.1; (b) ε2 = 280.7, σ2 = 0.1. a的初始值ainitial = 0.001

    Fig. 11.  When parameter a evolves according to the energy adaptive adjustment mode in Eq.(23), time series of (a1), (a2) u and (b1), (b2) y under different thresholds ε; (c1), (c2) the time evolution curves of Hamilton energy H, and (d1), (d2) parameter a. The threshold values ε are directly set with reference to the actual energy values: (a) ε1 = 262.7, σ1 = 0.1; (b) ε2 = 280.7, σ2 = 0.1. ainitial = 0.001 (initial value of parameter a).

    图 12  噪声分别作用在不同变量上的变异系数CV和哈密顿能量H随噪声强度D的演化图 (a1), (a2) x; (b1), (b2) y; (c1), (c2) z

    Fig. 12.  Evolution curves of the coefficient of variation (CV) and Hamilton energy (H) with noise intensity (D) when noise is applied separately to different variables: (a1), (a2) x; (b1), (b2) y; (c1), (c2) z.

    图 13  神经元工作过程中分别处于(a) 周期放电b = 0.991和(b) 混沌放电b = 0.928时, 电阻R1, R2R3对应的能量消耗占比情况; (c) b = 1.72时变量x的峰值xpeak对参数g的分岔图

    Fig. 13.  Proportion of energy consumption for resistors R1, R2 and R3 during neural operation under (a) periodic firing b = 0.991 and (b) chaotic firing b = 0.928; (c) bifurcation diagram of the peak value xpeak of variable g.

    Baidu
  • [1]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569Google Scholar

    [2]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [3]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867Google Scholar

    [4]

    Feali M S 2025 AEU-Int. J. Electron. Commun. 191 155679Google Scholar

    [5]

    Harerimana G, Kim I G, Kim J W, Jang B 2023 IEEE Access 11 106334Google Scholar

    [6]

    Chen C A, Mathalon D H, Roach B J, Cavus I, Spencer D D, Ford J M 2011 J. Cogn. Neurosci. 23 2892Google Scholar

    [7]

    Montano N, Furlan R, Guzzetti S, McAllen R M, Julien C 2009 Phil. Trans. R. Soc. A 367 1265Google Scholar

    [8]

    Shao J, Liu Y H, Gao D S, Tu J, Yang F 2021 Front. Cell. Neurosci. 15 741292Google Scholar

    [9]

    Koch N A, Sonnenberg L, Hedrich U B, Lauxmann S, Benda J 2023 Front. Neurol. 14 1194811Google Scholar

    [10]

    Dai Y, Cheng Y, Fedirchuk B, Jordan L M, Chu J H 2018 J. Neurophysiol. 120 1840Google Scholar

    [11]

    Velasco E, Alvarez J L, Meseguer V M, Gallar J, Talavera Karel 2022 Pain 163 64Google Scholar

    [12]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171Google Scholar

    [13]

    Xu Y H, Zhang S, Zhao Q Y, You S N, Dun W J, Zhao M K, Xu G Z 2023 Life Sci. Instrum. 21 64 [徐亦豪, 张帅, 赵清扬, 由胜男, 杜文静, 赵明康, 徐桂芝 2023 生命科学仪器 21 64]

    Xu Y H, Zhang S, Zhao Q Y, You S N, Dun W J, Zhao M K, Xu G Z 2023 Life Sci. Instrum. 21 64

    [14]

    Bao H, Xi M Q, Tang H G, Zhang X, Xu Q, Bao B C 2025 IEEE Trans. Ind. Inform. 21 1862Google Scholar

    [15]

    Zhang D K, Li Y Q, Rasch M J, Wu S 2013 Front. Comput. Neurosci. 7 56

    [16]

    Kobylarz T J, Kobylarz E J 2021 Clin. Neurophysiol. 132 e1

    [17]

    Wang Y Q, Ding G H, Yao W 2023 Appl. Math. 3 758

    [18]

    Yuan Z X, Feng P H, Fan Y C, Yu Y Y, Wu Y 2022 Cogn. Neurodyn. 16 183Google Scholar

    [19]

    Zhang S, Cui K, Shi X, Wang Z, Xu G Z 2019 Trans. China Electrotech. Soc. 34 3741 [张帅, 崔琨, 史勋, 王卓, 徐桂芝 2019 电工技术学报 34 3741]

    Zhang S, Cui K, Shi X, Wang Z, Xu G Z 2019 Trans. China Electrotech. Soc. 34 3741

    [20]

    Yang F F, Song X L, Yu Z H 2024 Chaos Soliton. Fract. 188 115496Google Scholar

    [21]

    Chen Y X, Guo Q, Zhang X F, Wang C N 2024 Chaos Soliton. Fract. 189 115738Google Scholar

    [22]

    Kumar P, Erturk V S 2025 Chin. Phys. B 34 018704Google Scholar

    [23]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473Google Scholar

    [24]

    Hodgkin, A L, Huxley, A F 1952 J. Physiol. 116 497Google Scholar

    [25]

    FitzHugh R 1961 Biophys. J. 1 445Google Scholar

    [26]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061Google Scholar

    [27]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063Google Scholar

    [28]

    Izhikevich E M, Edelman G M 2008 Proc. Natl. Acad. Sci. U. S. A. 105 3593Google Scholar

    [29]

    Li X Y, Min F H, Xiang W K, Cao Y 2023 J. Nanjing Norm. Univ. (Eng. Technol. Ed. ) 23 1 [李馨雅, 闵富红, 相惟康, 曹弋 2023 南京师范大学学报(工程技术版) 23 1]

    Li X Y, Min F H, Xiang W K, Cao Y 2023 J. Nanjing Norm. Univ. (Eng. Technol. Ed. ) 23 1

    [30]

    Bao H, Zhang J, Wang N, Kuznetsov N V, Bao B C 2022 Chaos 32 123101Google Scholar

    [31]

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502 [王世场, 卢振洲, 梁燕, 王光义 2022 71 050502]Google Scholar

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502Google Scholar

    [32]

    Zhang S H, Wang C, Zhang H L, Lin H R 2023 Chaos 33 083138Google Scholar

    [33]

    Jeyasothy A, Sundaram S, Sundarajan N 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 1231Google Scholar

    [34]

    Wang B C, Lv M, Zhang X, Ma J 2024 Phys. Scr. 99 055225Google Scholar

    [35]

    Jia J E, Yang F F, Ma J 2024 Chaos Soliton. Fract. 173 113689

    [36]

    Jia J E, Wang C N, Ren G D 2025 Chin. J. Phys. 95 978Google Scholar

    [37]

    Li R H, Ding R H. 2021 Int. J. Mod. Phys. B 35 2150166Google Scholar

    [38]

    Xu L, Qi G, Ma J 2022 Appl. Math. Model. 101 503Google Scholar

    [39]

    Yakopcic C, Hasan R, Taha T M, McLean M, Palmer D 2014 Electron. Lett. 50 492Google Scholar

    [40]

    Shi S Y, Liang Y, Li Y Q, Lu Z Z, Dong Y J 2024 Chaos Soliton. Fract. 180 114534Google Scholar

    [41]

    Shen H, Yu F, Wang C H, Sun J R, Cai S 2022 Nonlinear Dyn. 110 3807Google Scholar

    [42]

    Miranda E, Sune J 2020 Materials 13 938Google Scholar

    [43]

    Yang F F, Ma J, Wu F Q 2024 Chaos Soliton. Fract. 187 115361Google Scholar

    [44]

    Li Y N, Guo Q, Wang C N, Ma J 2024 Commun. Nonlinear Sci. Numer. Simul. 139 108320Google Scholar

    [45]

    Yu J, Li C, Zhang X M, Liu Q, Liu M 2025 Sci. China Inf. Sci. 55 749 [余杰, 李超, 张续猛, 刘琦, 刘明 2025 中国科学: 信息科学 55 749]

    Yu J, Li C, Zhang X M, Liu Q, Liu M 2025 Sci. China Inf. Sci. 55 749

    [46]

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302 [贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰 2024 73 207302]Google Scholar

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302Google Scholar

    [47]

    Ma D, Jin X F, Sun S C, Li Y T, Wu X D, Hu Y N, Yang F C, Tang H J, Zhu X L, Lin P, Pan G 2024 Natl. Sci. Rev. 11 nwae102Google Scholar

    [48]

    Sun B, Guo C B, Cui C Q, Zhang G H 2021 Microelectron. Reliab. 121 114123Google Scholar

    [49]

    Hernandez-Balaguera E, Vara H, Polo J L 2018 J. Electrochem. Soc. 165 G3099Google Scholar

    [50]

    Kim D, Kwon K, Kim Hea, Jin S, Yang H, Kim J, Park J 2019 ECS Meet. Abstr. MA2019-01 1169

    [51]

    Lee J, Cha M, Kwon M 2023 Appl. Sci. 13 2628Google Scholar

    [52]

    Joop M K, Azghadi M R, Behbahani F, Al-Shidaifat A, Song H J 2023 IEEE Access 11 133451Google Scholar

    [53]

    Zhou P J, Zuo Y, Qiao G C, Zhang C M, Zhang Z, Meng L W, Yu Q, Liu Y, Hu G S 2023 IEEE Trans. Biomed. Circuits Syst. 17 1319Google Scholar

    [54]

    Yang F F, Song X L, Ma J 2024 Chin. J. Phys. 91 287Google Scholar

  • [1] 邓浩洲, 王力可, 朱兆瑞, 王恒通, 屈世显. 一类分段光滑不连续映象中的边界碰撞分岔和余维分岔.  , doi: 10.7498/aps.75.20251167
    [2] 郭群, 徐莹. 无电容器嵌入的忆阻神经元电路的动力学与能耗分析.  , doi: 10.7498/aps.75.20251114
    [3] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析.  , doi: 10.7498/aps.69.20200814
    [4] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析.  , doi: 10.7498/aps.68.20190927
    [5] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , doi: 10.7498/aps.66.030502
    [6] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证.  , doi: 10.7498/aps.64.080503
    [7] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析.  , doi: 10.7498/aps.64.137201
    [8] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究.  , doi: 10.7498/aps.64.154503
    [9] 李海涛, 秦卫阳. 宽频随机激励下非线性压电能量采集器的相干共振.  , doi: 10.7498/aps.63.120505
    [10] 李海涛, 秦卫阳, 周志勇, 蓝春波. 带有分数阶阻尼的压电能量采集系统相干共振.  , doi: 10.7498/aps.63.220504
    [11] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振.  , doi: 10.7498/aps.63.248701
    [12] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性.  , doi: 10.7498/aps.62.070501
    [13] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析.  , doi: 10.7498/aps.61.074501
    [14] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步.  , doi: 10.7498/aps.60.050511
    [15] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振.  , doi: 10.7498/aps.59.699
    [16] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析.  , doi: 10.7498/aps.57.639
    [17] 易 鸣, 贾 亚, 刘 泉, 詹 璇. 生物钟基因网络中分子噪声诱导的日夜节律振荡及相干共振.  , doi: 10.7498/aps.57.621
    [18] 周小荣, 罗晓曙. 小世界生物神经网络的相干共振研究.  , doi: 10.7498/aps.57.2849
    [19] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响.  , doi: 10.7498/aps.55.4020
    [20] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析.  , doi: 10.7498/aps.55.634
计量
  • 文章访问数:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-14

/

返回文章
返回
Baidu
map