-
Zr/O/W肖特基式热场发射阴极作为电子束类高端分析仪器的核心组件,其独特的界面发射机制一直是阴极领域的研究热点。本研究团队成功制备了高性能Zr/O/W肖特基式热场发射阴极,其发射电流密度可达2.5× 104 A/cm2,使用寿命超过8000小时。通过能量色散X射线光谱(EDS)和俄歇电子能谱(AES)分析,对激活阴极发射区表面及深度方向成分分布进行了系统表征。结果表明,Zr/O/W阴极表面并非传统理论所认为的Zr-O偶极子单分子层,而是存在一层纳米级厚度的Zr/O/W(100)复合氧化层结构;该氧化层由三部分构成: W(100)晶面下方的氧渗入层、W(100)面本身以及晶面上方多原子层的Zr-O薄膜。Zr/O/W(100)氧化层使阴极发射面功函数从纳米WO3的5.02eV显著降低至2.85eV,从而形成局域化电子发射集中区。基于上述实验结果,结合第一性原理计算,本研究模拟了W(100)发射界面动态演变过程,为Zr/O/W肖特基式热场发射阴极界面发射机制提供了新的理论解释。The Zr/O/W Schottky-type thermal field emission cathode represents a pivotal component in advanced electron beam instrumentation, with its distinctive interfacial emission mechanism constituting a persistent research focus in cathode technology. Conventional understanding attributes the work function reduction at the cathode tip to a monolayer adsorption of Zr-O dipoles (with electropositive orientation outward, perpendicular to the surface) on the W (100) facet. This study achieved the successful fabrication of a high-performance Zr/O/W Schottky-type thermal field emission cathode exhibiting exceptional emission characteristics, including a current density of 2.5×104A/cm2 and operational stability surpassing 8,000 hours. Comprehensive microstructural characterization of the activated emission zone was performed utilizing energy-dispersive X-ray spectroscopy (EDS) and Auger electron spectroscopy (AES), enabling precise determination of elemental distribution profiles across both surface and subsurface regions. Results reveal that during cathode preparation, the zirconia coating diffuses in the form of Zr-O complexes within the tungsten matrix, forming nanoscale enrichment zones specifically on the W (100) facet. Under operational conditions combining elevated temperature (1700-1800 K) and high electric field (>107 V/m), the W (100) surface develops not an adsorbed Zr-O dipole monolayer, but a nanoscale Zr/O/W (100) composite oxide structure. This multilayer structure consists of three coherently integrated components: (i) an oxygen-enriched diffusion layer beneath the W (100) interface, (ii) the crystalline W (100) substrate, and (iii) an overlying Zr-O thin film with multiatomic-layer thickness. First-principles calculations simulating the dynamic evolution of the W (100) emission interface during thermal treatment corroborate the experimental findings. The computed work function of the cathode emission surface decreases significantly from 5.02eV (characteristic of nano-WO3) to 2.85eV, showing excellent agreement with experimental measurements. When the emission interface becomes unbalanced due to external perturbations, the continuous diffusion of the zirconia coating toward the tip region, combined with the diffusion of Zr-O complexes from the subsurface of the W (100) crystal plane to the interface, enables autonomous replenishment of surface-active sites. This dynamic process effectively maintains a stable low-work-function emission surface. Both theoretical and experimental evidence consistently demonstrate that the Zr/O/W (100) oxide film constitutes the fundamental material basis for the exceptional emission current density, remarkable stability, and extended operational lifetime of Zr/O/W cathodes.
-
Keywords:
- Zr/O/W /
- thermal field emission cathode /
- electron emission
-
[1] Orloff, J 2009 Handbook of Charged Particle Optics 2nd ed (Boca Raton: CRC Press) pp2—5
[2] Lamouri A, Muller W, Krainsky I L 1994 Phys. Rev. B 504764
[3] Leung T-C, Hu H, Liu A J, Lin M-C 2019 Phys. Chem. Chem. Phys. 2125763
[4] Guo J M, Yin S Y, Zhang Y Q, Sun W Z, Gao X Y 2022 J. Chin. Electron Microsc. Soc. 41664(in Chinese) [郭家美, 阴生毅, 张永清, 孙万众, 高向阳2022电子显微学报41664]
[5] Swanson L W, Schwind G A, Kellogg S M, Liu K 2012 J. Vac. Sci. Technol. B 3006f603
[6] Bahm A, Schwind G, Swanson L 2011 J. Appl. Phys. 110054322
[7] Shimizu R 1998 J. Electron Microsc. 47371
[8] Iiyoshi R 2011 Nucl. Instrum. Methods Phys. Res. A 645316
[9] Danielson L R, Swanson L W 1979 Surf. Sci. 8814
[10] Lee S C, Irokawa Y, Inoue M, Shimizu R 1995 Surf. Sci. 330289
[11] Guo J M, Yin S Y, Sun W Z, Zhang Y Q 2024 Proceedings of the 22nd Symposium on Vacuum Electronics Guangzhou, China, May 9—11, 2024 p414(in Chinese) [郭家美, 阴生毅, 孙万众, 张永清2024第二十二届真空电子学学术年会广州, 中国, 5月 9—11日, 2024第 414页]
[12] Wang X Q, Wang X X, Luo J R, Li Y 2022 Rare Met. Mater. Eng. 514658(in Chinese) [王兴起, 王小霞, 罗积润, 李云2022稀有金属材料与工程514658]
[13] Zhou X W, Zhu X F, Hu Q, Huang T, Yang Z H 2011 Vac. Electron. 224(in Chinese) [周细文, 朱小芳, 胡权, 黄桃, 杨中海2011真空电子技术2 24]
[14] Yin S Y, Lyu X P, Ren F, Lu Z P, Wang X X, Wang Y, Han J, Zhang Q, Li Y 2021 J. Electron. Inf. Technol. 433058(in Chinese) [阴生毅, 吕昕平, 任峰, 卢志鹏, 王欣欣, 王宇, 邯娇, 张琪, 李阳2021电子与信息学报433058]
[15] Cui Z Q, Qin Y C 2023 Metallography and Heat Treatment 3rd ed (Beijing: China Machine Press) p225(in Chinese) [崔忠圻, 覃耀春2023金属学与热处理第 3版(北京:机械工业出版社)第225页]
[16] Zhao Y C, Xu L J, Guo M Y, Li Z, Xu Z N, Ye J H, Wei S Z 2022 J. Alloys Compd. 921166153
[17] Yu J Q 1987 Binary Alloy Phase Diagrams Atlas 1st ed (Shanghai: Shanghai Science and Technology Press) p580( in Chinese) [虞觉奇1987二元合金状态图集第 1版(上海:上海科学技术出版社)第580页]
[18] Diyou J, Li X, Xuemei H, Tao W, Jianfeng H 2018 J. Mater. Res. 34290
[19] Alkhamees A, Zhou H-B, Liu Y-L, Jin S, Zhang Y, Lu G-H 2013 J. Nucl. Mater. 4376
[20] Liu K F, Sun D Z, Niu X H, Zhang H G, Chen W 2023 Phys. Exp. Coll. 3615( in Chinese) [刘凯斐, 孙大中, 牛相宏, 张红光, 陈伟2023大学物理实验3615]
[21] Nie Z, Ma L, Xi X, Liu Y, Zhao L 2021 J. Inorg. Mater. 361125
[22] Kul'kova S E, Bakulin A V, Hocker S, Schmauder S 2013 Tech. Phys. 58325
[23] Nagy D, Humphry-Baker S A 2022 Scr. Mater. 209114373
[24] Kajita S, Ohta A, Ishida T, Makihara K, Yoshida T, Ohno N 2015 Jpn. J. Appl. Phys. 54126201
计量
- 文章访问数: 16
- PDF下载量: 0
- 被引次数: 0