搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dy3+掺杂Ca7NaY(PO4)6单基质荧光粉的白光照明与温度传感特性

赵瑾 涂茹婷 刘馥妮 禄靖雯 付永诚 王宇 李廷政 冷稚华

引用本文:
Citation:

Dy3+掺杂Ca7NaY(PO4)6单基质荧光粉的白光照明与温度传感特性

赵瑾, 涂茹婷, 刘馥妮, 禄靖雯, 付永诚, 王宇, 李廷政, 冷稚华

White light illumination and temperature sensing characteristics of Dy3+-doped Ca7NaY(PO4)6 single-matrix phosphor

ZHAO Jin, TU Ruting, LIU Funi, LU Jingwen, FU Yongcheng, WANG Yu, LI Tingzheng, LENG Zhihua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 稀土离子掺杂荧光粉在照明、显示、防伪和光学测温等领域具有广阔的应用前景. 本文采用高温固相法制备了Ca7NaY(PO4)6: xDy3+ (x = 0.01—0.11)系列荧光粉. 通过X射线衍射和扫描电子显微镜对样品的晶体结构和微观形貌进行了表征, 并采用荧光光谱和荧光寿命衰减曲线对其发光特性和能量传递机制进行了系统研究. 在350 nm近紫外光激发下, 样品的发光强度随Dy3+掺杂浓度增加呈现先递增后递减的变化趋势, 在x = 0.07时达到最大值. Dy3+浓度增加导致非辐射跃迁增强, 荧光寿命逐渐降低. Ca7NaY(PO4)6: 0.07Dy3+在150 ℃高温下发光强度仍为室温时的86.9%, 展现出优异的热稳定性. 利用最佳样品与近紫外LED芯片封装所得白光LED器件性能优良, 其相关色温为5680 K, 色坐标位于(0.3275, 0.3883). 此外, 基于荧光强度比技术的温度传感特性研究表明, 该材料具备良好的光学测温潜力, 最大相对灵敏度达到1.72%/K. 结果表明, Ca7NaY(PO4)6: Dy3+荧光粉在固态照明及光学温度传感领域具有潜在的应用价值.
    Rare earth-activated phosphors have shown great potential applications in various fields, such as lighting, displays, anti-counterfeiting, and optical thermometry. This study aims to synthesize a series of Dy3+-doped Ca7NaY(PO4)6 phosphors through high-temperature solid-state reaction, focusing on developing multifunctional optical materials for lighting and temperature sensing. The phase purity and morphological characteristics of the obtained samples are confirmed by X-ray diffraction and scanning electron microscopy. Luminescence properties and energy transfer mechanisms are systematically investigated through photoluminescence spectroscopy and fluorescence decay analysis. Under 350-nm near-ultraviolet excitation, the emission intensity of Ca7NaY(PO4)6: Dy3+ increases with Dy3+ concentration rising until reaching an optimal value at x = 0.07, beyond which concentration quenching occurs. This quenching behavior is attributed to enhanced non-radiative energy transfer at higher Dy3+ concentrations, leading to a corresponding decrease in fluorescence lifetime. The optimized Ca7NaY(PO4)6: 0.07Dy3+ phosphor displays remarkable thermal stability, retaining 86.9% of its initial emission intensity at 150 ℃. The white light emitting diode(LED) device fabricated using the obtained phosphor and near-UV LED chip shows excellent performance with a correlated color temperature of 5680 K, CIE coordinates of (0.3275, 0.3883) in the white light region and a color rendering index of 85. Furthermore, temperature-dependent fluorescence intensity ratio analysis reveals excellent optical thermometric performance, achieving a maximum relative sensitivity (Sr) of 1.72 %/K. These results indicate that the Ca7NaY(PO4)6: Dy3+ phosphor exhibits significant potential applications in single-matrix phosphor-converted white LEDs and high-precision optical optical thermometry.
  • 图 1  (a) CNYP: xDy3+ (x = 0.03, 0.07, 0.11)的XRD图样与标准卡对比图; (b) CNYP: 0.07 Dy3+的精修图谱; (c) 晶体结构图

    Fig. 1.  (a) XRD pattern of CNYP: xDy3+ (x = 0.03, 0.07, 0.11) compared with standard card; (b) Rietveld refinement of CNYP: 0.07 Dy3+; (c) crystal structure of host.

    图 2  CNYP: 0.07 Dy3+的形态分析 (a)—(f)元素分布图; (g), (h) SEM图; (i) EDS光谱

    Fig. 2.  Morphology analysis of CNYP: 0.07 Dy3+: (a)–(f) Elemental distribution map; (g), (h) SEM images; (i) EDS spectrum.

    图 3  CNYP: xDy3+ (x = 0.01—0.11)样品的荧光光谱 (a) 激发光谱; (b) 发射光谱; (c) 发射光谱对应的等高线图

    Fig. 3.  Fluorescence spectra of CNYO: xDy3+ (x = 0.01–0.11) samples: (a) Excitation spectra; (b) emission spectra; (c) contour plot corresponding to the emission spectra.

    图 4  (a) CNYP: xDy3+ (x = 0.01—0.11)的三维发射光谱(λex = 350 nm); (b) 积分发射强度与Dy3+浓度柱状图; (c) lg(I/x)与lg(x)的线性拟合关系图; (d) 480 nm与571 nm处的相对发光强度

    Fig. 4.  (a) Photoluminescence emission spectra of CNYP: xDy3+ (x = 0.01–0.11) (λex = 350 nm); (b) the histogram between integrated emission intensity and Dy3+ concentration; (c) linear fitting diagram of lg(I/x) and lg(x); (d) relative luminescence intensity at 480 nm and 571 nm.

    图 5  (a) CNYP: xDy3+ (x = 0.01—0.11)荧光衰减曲线; (b) 荧光寿命与Dy3+掺杂浓度的关系

    Fig. 5.  (a) Lifetime decay curves of CNYP: xDy3+ (x = 0.01–0.11); (b) dependence of the lifetime on the Dy3+ concentration.

    图 6  (a) Dy3+的能级跃迁图; (b) 彩色光谱图

    Fig. 6.  (a) Energy level diagram of Dy3+; (b) color spectrum diagram.

    图 7  (a) CNYP: xDy3+ (x = 0.01—0.11)的CIE坐标; (b) 不同浓度样品的色度坐标值

    Fig. 7.  (a) CIE coordinates of CNYP: xDy3+ (x = 0.01–0.11); (b) colorimetric coordinate values of different concentrations.

    图 8  (a) CNYP: 0.07 Dy3+荧光粉在不同温度下的发射光谱; (b) 荧光强度3D图; (c) ln[(I0/I) – 1]与1/(kT)线性拟合关系; (d) 归一化发光强度随温度变化柱状图

    Fig. 8.  (a) Emission spectra of CNYP: 0.07 Dy3+ phosphors at different temperatures; (b) 3D graph of fluorescence intensity; (c) the linear fitting relationship between ln[(I0/I) – 1] and 1/(kT); (d) bar chart of normalized luminous intensity varying with temperatures.

    图 9  CNYP: 0.07 Dy3+的量子效率, 插图为部分放大图

    Fig. 9.  Quantum efficiency of CNYP: 0.07 Dy3+, the illustration is a partial enlarged graph.

    图 10  采用365 nm芯片和CNYP: 0.07 Dy3+荧光粉封装的W-LED器件

    Fig. 10.  W-LED device encapsulated with 365 nm chip and CNYP: 0.07 Dy3+ phosphor.

    图 11  (a) CNYP: 0.07 Dy3+荧光粉在440—500 nm波段的发射光谱图 (298—448 K); (b) 452 nm (4I15/26H15/2)和480 nm (4F9/26H15/2)积分发射强度随温度变化关系; (c) 荧光强度比随温度变化关系; (d) 绝对灵敏度和相对灵敏度随温度变化关系

    Fig. 11.  (a) Emission spectra of the CNYP: 0.07 Dy3+ phosphor in the wavelength range of 440–500 nm at different temperatures (298–448 K); (b) the luminous intensity changes of the 4I15/26H15/2 and 4F9/26H15/2; (c) fluorescence intensity ratio as a function of temperatures; (d) absolute sensitivity and relative sensitivity as a function of temperatures.

    表 1  CNYP: xDy3+的色度坐标和CCT色温

    Table 1.  CNYP(Zhao, Lu et al. 2025): xDy3+ chromaticity coordinates and CCT color temperature.

    No.ConcentrationxyCCT/K
    10.010.38970.43754219
    20.030.38460.44574130
    30.050.38940.45104033
    40.070.39050.45294015
    50.090.38720.44834075
    60.110.38650.44824093
    下载: 导出CSV

    表 2  以FIR技术为基础的温敏型Dy3+激活荧光粉的最大Sr值比较

    Table 2.  Comparison of maximum Sr values of temperature-sensitive Dy3+ activated phosphors based on FIR technique.

    Sensing materials Temperature range/K Sr max/(%·K–1) References
    Ca7NaY (PO4)6: Dy3+ 298—448 1.72 This work
    Ca5(PO4)2SiO4: Dy3+ 296—1073 1.75 [2]
    KNaCa2(PO4)2: Dy3+ 90—230/250—500 2.57/0.74 [16]
    CaLa4(SiO4)3O: Dy3+ 298—548 1.67 [23]
    Sr3Ga2Ge4O14:Dy3+ 298—473 0.61 [32]
    GdPO4: Dy3+ 290—530 1.55 [44]
    Ca3LuAl3B4O15: Dy3+ 300—500 1.46 [45]
    下载: 导出CSV
    Baidu
  • [1]

    Hu J, Cui R R, Zhang J, Peng L H, Shi Y Z, Guo X 2024 J. Rare Earths. 42 1855Google Scholar

    [2]

    Yu Z Q, Li X D, Wang J, Zhang S 2023 Mater. Today Chem. 33 101739Google Scholar

    [3]

    Gu J Q, Xie F Y, Wang S Q, Xu D K, Zhang H, Xu H L, Zhong S L 2024 Ceram. Int. 50 14127Google Scholar

    [4]

    谢吉焕 2022 博士学位论文 (吉林: 长春理工大学)

    Xie J H 2022 Ph. D. Dissertation (Jilin: Changchun University Of Science And Technology

    [5]

    Gao S F, Pan Y Y, Jia K Y, Han Pan, Xiong Y, Cheng S B 2024 ACS Appl. Nano Mater. 7 20094Google Scholar

    [6]

    Zhao R L, Guo X, Zhang J, Zhang C, Deng C Y, Cui R R 2023 Ceram. Int. 49 25795Google Scholar

    [7]

    于小芳 2022 博士学位论文 (吉林: 长春理工大学)

    Yu X F 2022 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology

    [8]

    Shi L Y, Zhao D, Zhang R J, Zhu S Y, Yu M H 2022 Dalton Trans. 51 3686Google Scholar

    [9]

    赵芳仪2024 博士学位论文 (北京: 北京科技大学)

    Zhao F Y 2024 Ph. D. Thesis (Beijing: University of Science and Technology Beijing

    [10]

    Wani M A, Magray T F, Belekar R M 2023 Inorg. Chem. Commun. 158 111703Google Scholar

    [11]

    Gao M, Li K, Yan Y H, Xin S Y, Dai H, Zhu G, Wang C 2021 J. Mol. Struct. 1228 129471Google Scholar

    [12]

    Chen R J, Jiang X L, Zhang T Q, Zeng F M, Yang W L, Lin H, Liu L N, Li S S, Li C, Su Z M 2023 J. Alloys Compd. 966 171558Google Scholar

    [13]

    王一航, 连雪珠, 徐华伟, 康晓娇, 吕伟 2022 发光学报 43 676Google Scholar

    Wang Y H, Lian X Z, Xu H W, Kang X J, Lv W 2022 Chin. J. Lumin. 43 676Google Scholar

    [14]

    Song R T, Tang H, Li J P, Niu Y F, Liu Y X, He J Y, Zhu J 2024 Opt. Mater. 148 114859Google Scholar

    [15]

    Liu C L, Zheng Y K, Qin Y, Liang L L, Yang S Q, Li H, Jiang H M, Zhao X Y, Liu S L, Zhang H Z, Zhu J 2024 Inorg. Chem. 63 6483Google Scholar

    [16]

    Jose J R, Jose T A, Ashok A J, Joseph C, Biju P R 2024 J. Alloys Compd. 1006 176304Google Scholar

    [17]

    Zhong C S, Zhang L, Xu Y H, Wu X D, Yin S W, Zhang X B, You H P 2022 Mater. Today Chem. 26 101233Google Scholar

    [18]

    Xia Z G, Liu Q L 2016 Prog. Mater Sci. 84 59Google Scholar

    [19]

    Zhang X, Cui R R, Zhang M, Pi Y W, Yin X X, Deng C Y 2024 J. Alloys Compd. 1002 175471Google Scholar

    [20]

    Wei C, Zhang J, Sun Z, Ran J Y, Guo L, Sun J Y 2024 J. Alloys Compd. 971 172686Google Scholar

    [21]

    禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华 2024 73 111

    Lu J W, Zhao J, Zhang Y C, Tu R T, Liu F N, Leng Z H 2024 Acta Phys. Sin. 73 111

    [22]

    姜洪喜, 吕树臣 2021 70 254

    Jiang H X, Lv S C 2011 Acta Phys. Sin. 70 254

    [23]

    Liu Q Y, Wu M H, Chen B L, Huang X M, Liu M Y, Liu Y F, Su K, Min X, Mi R Y, Huang Z H 2023 Ceram. Int. 49 4971Google Scholar

    [24]

    Xi Q, Yin T, Zhang Y, Zhao H C, Wu Z P, Zhang Q Q, Wang D W, Guan L, Wang C S, Li X 2025 J. Alloys Compd. 1018 179241Google Scholar

    [25]

    Tang H, Zhang X Y, Cheng L Q, Mi X Y, Liu Q S 2022 J. Alloys Compd. 898 162758Google Scholar

    [26]

    王瑞阳 2024 博士学位论文 (吉林: 长春理工大学)

    Wang R Y 2024 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology

    [27]

    Zhang Y, Miao S H, Liang Y J , Liang C, Chen D X, Shan X H, Sun K N, Wang X J 2022 Light Sci. Appl. 11 136.

    [28]

    Wang Y Q, Li Y F, Du Y L, Liu G X, Liu S D, Wang J X, Dong X T 2025 J. Mol. Struct. 1324 140971Google Scholar

    [29]

    Min Z Y, Zeng Q, Chen S M, Qin Y, Yao C F 2022 J. Alloys Compd. 924 166497Google Scholar

    [30]

    Long S C, Tian M F, Zhang D, Luo X X, Xu W, Tian Y, Xin S Y 2024 J. Mater. Chem. C. 12 19536Google Scholar

    [31]

    Guo J, Li S C, Kong J Y, Li Y X, Zhou L, Lou L Y, Lv Q Y, Tang R, Zheng L L, Deng B, Yu R J 2022 Opt. Laser Technol. 155 108347Google Scholar

    [32]

    Wang Z Y, Ma L Y, Shao Y, Luo Y Z, Liao R C, Kong X M, Yang X Y 2025 Ceram. Int. 51 19535Google Scholar

    [33]

    罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋 2023 72 315

    Luo J, Zhang Z Q, Xu J H, Qin Z T, Zhao Y S, He H, Li P N, Tang J F 2023 Acta Phys. Sin. 72 315

    [34]

    Zhang Y H, Sun B, Liu J, Zhang Z Y, Liu H 2023 Dalton Trans. 52 13304Google Scholar

    [35]

    官春艳, 郑启泾, 万正环, 杨锦瑜 2024 材料导报 38 87

    Gong C Y, Zheng Q J, Wan Z H, Yang J Y 2024 MR 38 87

    [36]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar

    [37]

    Li Y T, Xu S, Chen J, Wang X K, Gong S, Zhang X J, Liu H S, Chi Y D, Sun X R, Mahadevan C K 2024 Ceram. Int. 50 25548Google Scholar

    [38]

    王佳旭, 李忠辉, 赵炎, 蒋小康, 周恒为 2024 73 187801Google Scholar

    Wang J X, Li Z H, Zhao Y, Jiang X K, Zhou H W 2024 Acta Phys. Sin. 73 187801Google Scholar

    [39]

    Zhou J, Wang T S, Zhang W T, Huang X, Wang X M 2022 Ceram. Int. 48 17053Google Scholar

    [40]

    赵旺, 平兆艳, 郑庆华, 周薇薇 2018 67 247801Google Scholar

    Zhao W, Ping Z Y, Zheng Q H, Zhou W W 2018 Acta Phys. Sin. 67 247801Google Scholar

    [41]

    Zhou L, Liu L, Yang R Q, Kong J Y, Li Y X, Zhao Y X, Du Y F, Li C L, Zou Z Q, Deng B, Yu R J 2023 Inorg. Chem. Commun. 148 110316Google Scholar

    [42]

    Song R T, Zhang Z H, Li H, Luo Z Y, Yang J Y, Ma J, Xiang X F, Zeng Q, Zhu J 2023 Ceram. Int. 49 6965Google Scholar

    [43]

    Chen S M, Zeng Q, Yao C F, Liu Y Y, Qin Y, Min Z Y 2022 J. Lumin. 244 118697Google Scholar

    [44]

    Abbas M T, Khan S A, Mao J, Khan N Z, Qiu L, Ahmed J, Wei X, Chen Y, Alshehri S M, Agathopoulos S 2022 J. Therm. Anal. Calorim. 147 11769Google Scholar

    [45]

    GaoF H, Khan W U, Khan W U, Ye Z Q, Zhang Y L 2023 Ceram. Int. 49 8039Google Scholar

    [46]

    Wade S A, Collins S F, Baxter G W 2003 J. Appl. Phys. 94 4743Google Scholar

    [47]

    严涌飚, 李霜, 丁双双, 张冰雪, 孙浩, 鞠泉浩, 姚露 2024 73 097801Google Scholar

    Yan Y B, Li S, Ding S S, Zhang B X, Sun H, Ju Q H, Yao L 2024 Acta Phys. Sin. 73 097801Google Scholar

    [48]

    Liao Z C, Cao B S, Li L P, Cong Y, He Y Y, Dong B 2023 Appl. Mater. Today 31 101765Google Scholar

  • [1] 禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华. 固态照明用Li2Gd4(MoO4)7:Sm3+橙红色荧光粉的结构和发光特性.  , doi: 10.7498/aps.73.20241017
    [2] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能.  , doi: 10.7498/aps.72.20221341
    [3] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展.  , doi: 10.7498/aps.68.20190647
    [4] 彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏. 深红色Mg1+yAl2-xO4:xMn4+,yMg2+荧光粉的合成与发光性质.  , doi: 10.7498/aps.67.20180778
    [5] 刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿. CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能.  , doi: 10.7498/aps.65.207801
    [6] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , doi: 10.7498/aps.64.107801
    [7] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展.  , doi: 10.7498/aps.63.068103
    [8] 周仁迪, 黄雪飞, 齐智坚, 黄维刚. Ca2Si(O4-xNx):Eu2+绿色荧光粉的制备及其发光性能.  , doi: 10.7498/aps.63.197801
    [9] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究.  , doi: 10.7498/aps.61.127807
    [10] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究.  , doi: 10.7498/aps.61.167104
    [11] 钱可元, 马骏, 付伟, 罗毅. 基于Mie散射理论的白光发光二极管荧光粉散射特性研究.  , doi: 10.7498/aps.61.204201
    [12] 唐红霞, 吕树臣. 发光二极管用红色荧光粉SrMoO4:Eu3+的制备和发射性质.  , doi: 10.7498/aps.60.037805
    [13] 刘元红, 庄卫东, 高文贵, 胡运生, 何涛, 何华强. 硼酸对亚微米级Ca3Sc2Si3O12:Ce绿色荧光粉的制备及发光性能的影响.  , doi: 10.7498/aps.59.8200
    [14] 杨志平, 马欣, 赵盼盼, 宋兆丰. SrAl2B2O7:Dy3+材料的制备及其发光性能.  , doi: 10.7498/aps.59.5387
    [15] 吴春芳, 孟燮, 李杰, 王育华. 不同形貌的LaPO4:Dy荧光粉的制备及其真空紫外激发下的发光性能.  , doi: 10.7498/aps.58.6518
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , doi: 10.7498/aps.58.7189
    [17] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征.  , doi: 10.7498/aps.55.1384
    [18] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , doi: 10.7498/aps.55.1424
    [19] 杨志平, 刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究.  , doi: 10.7498/aps.55.4946
    [20] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究.  , doi: 10.7498/aps.54.5344
计量
  • 文章访问数:  888
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-07
  • 修回日期:  2025-08-02
  • 上网日期:  2025-08-28

/

返回文章
返回
Baidu
map