搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微带线在太赫兹低频段的色散特性分析与实验验证

徐振 罗曼 梁博涵 李吉宁 张嘉昕 王坦 陈锴 徐德刚

引用本文:
Citation:

微带线在太赫兹低频段的色散特性分析与实验验证

徐振, 罗曼, 梁博涵, 李吉宁, 张嘉昕, 王坦, 陈锴, 徐德刚

Analysis and experimental verification of dispersion characteristics of microstrip lines in terahertz low frequency band

XU Zhen, LUO Man, LIANG Bohan, LI Jining, ZHANG Jiaxin, WANG Tan, CHEN Kai, XU Degang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 太赫兹波在通信、生物医学及安检等领域具有重要应用潜力, 但其传输过程中的色散与损耗问题严重制约了系统性能的提升. 微带线作为平面传输线, 具有结构紧凑、易于集成的优势, 但其在太赫兹波段的色散特性有待深入研究. 本研究通过理论分析、数值仿真与实验验证相结合的方法, 系统探究太赫兹频段微带线的色散特性及其影响因素. 理论将微带线色散细分为介质色散、几何色散和导体色散, 推导了各色散分量的解析表达式. 实验采用太赫兹时域脉冲反射技术, 对不同基底介电常数、导线宽度及长度的微带线进行测试, 结合数值仿真验证了理论模型的准确性, 并引入脉冲展宽系数对微带线的在太赫兹低频段的色散效应进行定量分析. 结果表明: 基底介电常数从2.2增至4.5时, 色散效应明显增大; 当导线宽度从100 μm增至1600 μm时, 通过增强几何色散使脉冲展宽系数从3.18增至5.12, 增幅达38%; 当导体长度从10 mm增至150 mm时, 则通过累积效应使展宽系数从2.12增至3.18, 增幅为33%, 与理论模型及仿真结果高度吻合. 本研究为太赫兹微带线的工程设计与结构优化提供了理论依据, 揭示了关键参数对微带线色散特性的调控规律, 对提升太赫兹通信系统带宽与信号完整性具有重要价值, 并为后续开发低色散、高性能太赫兹平面电路奠定了技术基础.
    Terahertz waves have broad application prospects in fields such as food quality, biomedicine, and security communication. However, the dispersion and loss during transmission limit the development of terahertz systems. This study focuses on the dispersion characteristics of microstrip lines in the terahertz low-frequency range. By combining theoretical modeling, numerical simulation, and experimental verification, the dispersion mechanism and key influencing factors of microstrip lines are systematically analyzed, providing theoretical support for low dispersion, high-performance terahertz integrated circuits and systems. This study is based on electromagnetic field theory, dividing microstrip line dispersion into dielectric dispersion, geometric dispersion, and conductor dispersion, and introducing a modified model to overcome the limitations of traditional quasi-static theory in the high frequency range. In this study, the CST time-domain finite difference simulation and terahertz time-domain pulse reflection (TDR) technology are employed to conduct multidimensional simulation and examine three different dielectric constant substrates (2.2, 3, 4.5), wire widths (100–1600 μm), lengths (10–150 mm) and other parameters. The pulse broadening coefficient is introduced to quantitatively evaluate the dispersion characteristics of microstrip lines. The results indicate that the increase in substrate dielectric constant significantly enhances the dispersion effect. When εr increases from 2.2 to 4.5, the increase in equivalent dielectric constant leads to a decrease in pulse transmission speed; When the wire width increases from 100 μm to 1600 μm, the pulse broadening coefficient dominated by geometric dispersion increases from 3.12 to 5.12, with an increase of 38%. However, when the wire length increases from 10 mm to 150 mm, the cumulative dispersion increases the broadening coefficient from 2.12 to 3.18, with an increase of 33%, verifying the sensitivity of width to dispersion control. The simulation result once again shows that due to the small skin depth of terahertz waves on metal surfaces, the difference in conductivity among the three conductor materials of gold, silver, and copper (4.1×107–6.3×107 S/m) can be ignored in terms of dispersion effect. According to the actual measurement and fitting results, the geometric dispersion of microstrip lines is more significant than the dispersion loss caused by length accumulation. In addition, simulation, experimental testing, and theoretical analysis are all in good consistency with each other. The conclusion indicates that optimizing the design of microstrip lines requires priority control of the dielectric constant and wire width of substrate material to suppress the synergistic effect of geometric dispersion and dielectric dispersion, providing quantifiable design criteria for high bandwidth and low distortion transmission in terahertz communication systems, and laying experimental and theoretical foundations for the engineering application of terahertz integrated circuits.
  • 图 1  微带线结构图 (a) 整体结构; (b) 剖面图

    Fig. 1.  Microstrip line structure diagram: (a) Overall structure; (b) sectional view.

    图 2  不同介质基底的微带线的TDR仿真信号 (a) 介电常数2.2; (b) 介电常数3; (c) 介电常数4.4

    Fig. 2.  TDR simulation signals of microstrip lines with different dielectric substrates: (a) The dielectric constant is 2.2; (b) the dielectric constant is 3; (c) the dielectric constant is 4.4.

    图 3  长度为150 mm, 不同宽度微带线TDR仿真信号 (a), (b) 局部放大图; (c) envolope包络处理

    Fig. 3.  TDR simulation signals of microstrip lines with different widths and lengths of 150 mm: (a), (b) Partial enlarged image; (c)envelope processing.

    图 4  不同长度的微带线的TDR仿真信号

    Fig. 4.  TDR simulation signals of microstrip lines of different lengths.

    图 5  不同金属导线的TDR仿真信号

    Fig. 5.  TDR simulation signals of different metal wires.

    图 6  不同基底的微带线实测反射信号 (a) 长度10 mm; (b) 长度100 mm

    Fig. 6.  Reflected signals measured from microstrip lines on different substrates: (a) Length is 10 mm; (b) length is 100 mm.

    图 7  不同宽度的微带线实测反射信号

    Fig. 7.  Reflected signals measured from microstrip lines of different widths.

    图 8  不同长度的微带线实测反射信号

    Fig. 8.  Reflected signals measured from microstrip lines of different lengths.

    图 9  不同参数的微带线脉冲展宽系数分析

    Fig. 9.  Analysis of pulse widening coefficient of microstrip lines with different parameters.

    Baidu
  • [1]

    Okubo K, Manago G, Tanabe T, Yu J, Liu X Y, Sasaki T 2025 Waste Manag. 196 32Google Scholar

    [2]

    Guo H, Hilaili M, Sari B P P, Putri W D R, Ogawa Y 2025 Food Chem. 479 143867Google Scholar

    [3]

    Zhang H T, Wang L J, Tan L, Zhao X T, Tian C H 2024 Spectrosc. Spectr. Anal. 44 2120 (in Chinses) [张红涛, 王龙杰, 谭联, 赵鑫涛 田承浩 2024 光谱学与光谱分析 44 2120]

    Zhang H T, Wang L J, Tan L, Zhao X T, Tian C H 2024 Spectrosc. Spectr. Anal. 44 2120 (in Chinses)

    [4]

    Iftekharul F A M, Naim M N R, Noor K S, Kundu D, Rashed A N Z 2025 Cell Biochem Biophys 83 489

    [5]

    Wekalao J 2025 Plasmonics DOI: 10.1007/s11468-025-02858-z

    [6]

    Wang Y Y, Li H B, Ge M L, Xu D G, Yao J Q 2023 Laser Optoelectron. Prog. 60 18 (in Chinses) [王与烨, 李海滨, 葛梅兰, 徐德刚, 姚建铨 2023 激光与光电子学进展 60 18]

    Wang Y Y, Li H B, Ge M L, Xu D G, Yao J Q 2023 Laser Optoelectron. Prog. 60 18 (in Chinses)

    [7]

    Peng D L, Xu L M, Wu H, Wang T, Xiao H, Cheng L L, Qin Y W 2025 Opt. Express 33 16237Google Scholar

    [8]

    Zeng Z K, Luo S J, Chen M Y, Zhao G P, He C H, Wu H 2024 IEEE Sens. J 24 21

    [9]

    Wei C S, Li Q F, Ma X Y, Yang Y P 2024 Spectrosc. Spectr. Anal. 44 3001 (in Chinses) [魏春生, 李奇峰, 马翔云, 杨云鹏 2024 光谱学与光谱分析 44 3001]

    Wei C S, Li Q F, Ma X Y, Yang Y P 2024 Spectrosc. Spectr. Anal. 44 3001 (in Chinses)

    [10]

    Xue Q, Ji C W, Ma S D, Guo J J, Xu Y J, Chen Q B 2024 IEEE Commun. Surv. Tutor. 26 1520Google Scholar

    [11]

    Wang L, Dai J Y, Ding K S, Zeng H X, Cheng Q, Yang Z Q, Zhang Y X, Zhang Y X, Cui T J 2024 Sci. Adv. 10 eadq8693Google Scholar

    [12]

    Feng Q, Zhao F 2025 Acta Opt. Sin. 45 0806002 (in Chinses) [冯琦, 赵峰 2025 光学学报 45 0806002]

    Feng Q, Zhao F 2025 Acta Opt. Sin. 45 0806002 (in Chinses)

    [13]

    Lees H, Headland D, Murakami S, Fujita M, Withayachumnankul W 2024 APL Photonics 9 036107Google Scholar

    [14]

    Bonmann M, Moradikouchi A, Bryllert T, Sparén A, Folestad S, Johansson J 2024 IEEE Sens. J. 24 20512Google Scholar

    [15]

    Hossain M S, Mohammad S H M, Rahman H, Sen S 2024 Res. Opt. 14 100599Google Scholar

    [16]

    Zhang J Y, Yang X K, Ren J J, Li L J, Zhang D D, Gu J, Xiong W H 2024 Measurement 233 114771Google Scholar

    [17]

    Wang L M, Zhu L J, Sun Y H 2025 J. At. Mol. Phys. 42 041006 (in Chinses) [王利民, 朱立江, 孙延华 2025 原子与分子 42 041006]

    Wang L M, Zhu L J, Sun Y H 2025 J. At. Mol. Phys. 42 041006 (in Chinses)

    [18]

    Huang Y, Kida T, Wakiuchi S, Okatani T, Inomata Ni, Kanamori Y 2024 Adv. Sci. 11 34

    [19]

    李征帆 2017 微带电路 (北京: 清华大学出版社)第99—109页

    Li Z F 2017 Microstrip Circuit (Beijing: Tsinghua University Press) pp99–109

    [20]

    Taiki K, Taiki Y, Ren K, Youngwoo K, Jerdvisanop C, Yuichi H 2022 IEEE Trans. Electromagn. Compat. 64 5

    [21]

    Aditya R, Eric B, Melinda P M, Mohammed F H 2024 IEEE Trans. Signal Power Integr. 3 178Google Scholar

    [22]

    Singh P, Awasthi Y K 2024 IJRASET 13 642

    [23]

    Singh P, Awasthi Y K 2024 Int. J. Res. Appl. Sci. Eng. Techn. 12 1447Google Scholar

    [24]

    殷际杰2004 微波技术与天线—电磁导波与辐射工程(北京: 电子工业出版社)第117页

    Yin J J 2004 Microwave Technoligy and Antenna (Beijing: Publishing House of Electronics Industry) p117

    [25]

    栾秀珍, 王钟葆, 傅世强, 房少军 2017 微波技术与器件 (北京: 清华大学出版社) 第74页

    Luan X Z, Wang Z B, Fu S Q, Fang S J 2017 Microwave Technology and Microwave Devices (Beijing: Tsinghua University Press) p74

    [26]

    Merlyn S, Rastogi A K 2024 Int. J. Sci. Mod. Res. Technol. 16 3

    [27]

    朱晶 2019硕士学位论文(南京: 南京林业大学)

    Zhu J 2019 M. S. Thesis (Nanjing: Nanjing Forestry University

    [28]

    Biswas K 2020 International Conference on Recent Innovations in Engineering and Technology (ICRIET 2020) Tamil Nadu, India, December 4–5, 2020 p1070

    [29]

    Biswas, K, Lakshman D, Bidyut H 2024 IJCSRR 07

    [30]

    Nobuki H, Tadashi N, Naoki H, Momoka T, Hiroki O, Jihoon K 2025 T-MTT 1–12

    [31]

    Gunda K 2019 M. S. Thesis (Universität Hamburg

    [32]

    徐振, 罗曼, 李吉宁, 刘龙海 徐德刚 2024 73 114203Google Scholar

    Xu Z, Luo M, Li J N, Liu L H, Xu D G 2024 Acta Phys. Sin. 73 114203Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , doi: 10.7498/aps.73.20231357
    [2] 徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚. 太赫兹金属线波导传输特性实验研究及模拟分析.  , doi: 10.7498/aps.73.20240279
    [3] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , doi: 10.7498/aps.71.20220722
    [4] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性.  , doi: 10.7498/aps.70.20210062
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性.  , doi: 10.7498/aps.70.20211210
    [6] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性.  , doi: 10.7498/aps.69.20200766
    [7] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性.  , doi: 10.7498/aps.69.20200662
    [8] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性.  , doi: 10.7498/aps.68.20190902
    [9] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , doi: 10.7498/aps.68.20190217
    [10] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性.  , doi: 10.7498/aps.67.20180769
    [11] 牟媛, 吴振森, 张耿, 高艳卿, 阳志强. 基于Kramers-Kronig关系建立金属太赫兹色散模型.  , doi: 10.7498/aps.66.120202
    [12] 崔彬, 杨玉平, 马品, 杨雪莹, 马俪文. 全介质光栅在太赫兹波段的光调控特性.  , doi: 10.7498/aps.65.074209
    [13] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性.  , doi: 10.7498/aps.65.015201
    [14] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , doi: 10.7498/aps.64.117801
    [15] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究.  , doi: 10.7498/aps.64.024101
    [16] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , doi: 10.7498/aps.63.075201
    [17] 王瑞君, 邓彬, 王宏强, 秦玉亮. 太赫兹与远红外频段下铝质目标电磁特性与计算.  , doi: 10.7498/aps.63.134102
    [18] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , doi: 10.7498/aps.62.237804
    [19] 樊国丽, 江月松, 刘丽, 黎芳. 太赫兹GaAs肖特基混频二极管高频特性分析.  , doi: 10.7498/aps.59.5374
    [20] 张东科, 张冶文, 赫 丽, 李宏强, 陈 鸿. 利用集总L-C元件构造的一维metamaterials特性的实验研究.  , doi: 10.7498/aps.54.768
计量
  • 文章访问数:  249
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-27
  • 修回日期:  2025-08-04
  • 上网日期:  2025-09-10

/

返回文章
返回
Baidu
map