搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻金属Cr薄膜的逆轨道霍尔效应

陈锋 王平 张志佳 何康 冯正 张德林

引用本文:
Citation:

轻金属Cr薄膜的逆轨道霍尔效应

陈锋, 王平, 张志佳, 何康, 冯正, 张德林

Inverse orbital Hall effect in light metal Cr films

CHEN Feng, WANG Ping, ZHANG Zhijia, HE Kang, FENG Zheng, ZHANG Delin
cstr: 32037.14.aps.74.20250346
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 轻金属材料Cr具有较大的轨道霍尔电导, 并且不依赖强自旋-轨道耦合即可实现高效的电荷流-轨道流转换, 这些优点在自旋电子领域具有重要的应用前景, 有助于开发新型的轨道-自旋电子器件. 本研究采用磁控溅射的方法在Al2O3衬底上制备了Cr薄膜和Cr/Ni异质结. 通过太赫兹发射谱测量观察到Cr中的逆轨道霍尔效应. 在Cr/Ni异质结中由铁磁层Ni中自旋-轨道耦合所产生的轨道流通过Cr的逆轨道霍尔效应转换为电荷流. 此外, 研究了太赫兹信号对Ni层厚度的依赖性, Ni厚度的增加显著地提高了自旋流-轨道流的转换效率, 增强了轨道太赫兹发射信号. Cr的逆轨道霍尔效应为轨道-自旋电子器件的设计与性能调控提供了新的研究思路.
    Orbitronic devices have aroused considerable interest due to their unique advantage of being independent of strong spin-orbit coupling. Light metal chromium (Cr) with high orbital Hall conductivity has significant potential for application in orbit-spintronic devices. In this study, we present experimental verification of the inverse orbital Hall effect (IOHE) in Cr thin films and systematically investigate the underlying physical mechanisms of orbital-to-charge current conversion. The Cr/Ni and Pt/Ni heterostructures are fabricated on Al2O3 substrates via magnetron sputtering. Terahertz time-domain spectroscopy is employed to measure the terahertz emission signal. The Cr/Ni heterostructure exhibits the same positive terahertz polarity as the ISHE-dominant Pt/Ni heterostructure, despite the Cr layer owing negative spin Hall angle, which confirms the IOHE of Cr/Ni heterostructure. In the Cr/Ni heterostructures, femtosecond laser excitation generates spin current in the ferromagnetic Ni layer, which is converted into orbital current via its spin-orbit coupling. This orbital current propagates into the Cr layer where it is transformed into charge current through the IOHE. Furthermore, the increase of the Cr thickness (2–40 nm) weakens the terahertz emission of Cr/Ni heterostructures due to enhanced optical absorption of Cr layers reducing spin current generation in Ni layers. However, the optimization of Ni thickness (3–10 nm) significantly enhances the terahertz emission by improving the spin-to-orbital current conversion efficiency. This work provides experimental evidence for IOHE in Cr films and demonstrates the crucial role of ferromagnetic layer engineering in spin-to-orbital current conversion efficiency, providing innovative perspectives for designing and optimizing the performance of orbitronic devices.
      通信作者: 王平, pingwang@tiangong.edu.cn ; 张志佳, zhangzhijia@tiangong.edu.cn ; 何康, hekang_mtrc@caep.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1204003)、国家自然科学基金(批准号: 52271240, 62027807)、沧州市重点研发计划(批准号: 222104008)和河北省自然科学基金(批准号: E2023110012)资助的课题.
      Corresponding author: WANG Ping, pingwang@tiangong.edu.cn ; ZHANG Zhijia, zhangzhijia@tiangong.edu.cn ; HE Kang, hekang_mtrc@caep.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204003), the National Natural Science Foundation of China (Grant Nos. 52271240, 62027807), the Key R&D Program of Cangzhou City, China (Grant No. 222104008), and the Hebei Natural Science Foundation, China (Grant No. E2023110012).
    [1]

    Choi Y G, Jo D, Ko K H, Go D, Kim K H, Park H G, Kim C, Min B C, Choi G M, Lee H W 2023 Nature 619 52Google Scholar

    [2]

    Go D, Jo D, Kim C, Lee H W 2018 Phys. Rev. Lett. 121 086602Google Scholar

    [3]

    Jo D, Go D, Lee H W 2018 Phys. Rev. B 98 214405Google Scholar

    [4]

    Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037Google Scholar

    [5]

    Go D, Jo D, Kim K W, Lee S, Kang M G, Park B G, Blügel S, Lee H W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701Google Scholar

    [6]

    Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405Google Scholar

    [7]

    Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429Google Scholar

    [8]

    Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703Google Scholar

    [9]

    Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745Google Scholar

    [10]

    Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113Google Scholar

    [11]

    Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601Google Scholar

    [12]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117Google Scholar

    [13]

    Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001Google Scholar

    [14]

    Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32Google Scholar

    [15]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [16]

    Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001Google Scholar

    [17]

    Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901Google Scholar

    [18]

    Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J, Park B G 2021 Commun. Phys. 4 234Google Scholar

    [19]

    Guo Y, Zhang Y, Lü W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408Google Scholar

    [20]

    Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502Google Scholar

    [21]

    Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901Google Scholar

    [22]

    Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274Google Scholar

    [23]

    Go D, Lee H W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435Google Scholar

    [24]

    Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O, Lee K J 2021 Nat. Commun. 12 6710Google Scholar

    [25]

    Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702Google Scholar

    [26]

    Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28Google Scholar

    [27]

    Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132Google Scholar

    [28]

    Kumar S, Kumar S 2023 Nat. Commun. 14 8185Google Scholar

    [29]

    Xu Y, Zhang F, Fert A, Jaffres H Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043Google Scholar

    [30]

    Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568Google Scholar

    [31]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 Adv. Mater. 29 1603031Google Scholar

    [32]

    Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554Google Scholar

  • 图 1  (a) Al2O3/Cr (40 nm), (b) Al2O3/Cr (10 nm)/Ni (5 nm)和(c) Al2O3/Cr (40 nm)/Ni (5 nm)的原子力显微镜图像

    Fig. 1.  AFM images of (a) Al2O3/Cr (40 nm), (b) Al2O3/Cr (10 nm)/Ni (5 nm) and (c) Al2O3/Cr (40 nm)/Ni (5 nm) samples

    图 2  (a)—(e) Cr (2—40 nm)/Ni (5 nm)结构的太赫兹信号

    Fig. 2.  (a)–(e) The THz signals of the Cr (2–40 nm)/Ni (5 nm) structures.

    图 3  (a) Pt (1 nm)/Ni (5 nm)和(b) Pt (3 nm)/Ni (5 nm)结构的太赫兹信号

    Fig. 3.  The THz signals of the (a) Pt (1 nm)/Ni (5 nm) and (b) Pt (3 nm)/Ni (5 nm) structures

    图 4  (a) Cr (10 nm)/Ni (3 nm), (b) Cr (10 nm)/Ni (5 nm)和(c) Cr (10 nm)/Ni (10 nm)结构的太赫兹信号

    Fig. 4.  The THz signals of the (a) Cr (10 nm)/Ni (3 nm) structures, (b) Cr (10 nm)/Ni (5 nm) and (c) Cr (10 nm)/Ni (10 nm) structures

    图 5  (a) Cr/Ni结构中IOHE机制; (b) Pt/Ni结构中ISHE机制

    Fig. 5.  (a) Mechanism of IOHE in Cr/Ni structures; (b) mechanism of ISHE in Pt/Ni structures.

    Baidu
  • [1]

    Choi Y G, Jo D, Ko K H, Go D, Kim K H, Park H G, Kim C, Min B C, Choi G M, Lee H W 2023 Nature 619 52Google Scholar

    [2]

    Go D, Jo D, Kim C, Lee H W 2018 Phys. Rev. Lett. 121 086602Google Scholar

    [3]

    Jo D, Go D, Lee H W 2018 Phys. Rev. B 98 214405Google Scholar

    [4]

    Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037Google Scholar

    [5]

    Go D, Jo D, Kim K W, Lee S, Kang M G, Park B G, Blügel S, Lee H W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701Google Scholar

    [6]

    Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405Google Scholar

    [7]

    Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429Google Scholar

    [8]

    Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703Google Scholar

    [9]

    Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745Google Scholar

    [10]

    Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113Google Scholar

    [11]

    Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601Google Scholar

    [12]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117Google Scholar

    [13]

    Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001Google Scholar

    [14]

    Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32Google Scholar

    [15]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [16]

    Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001Google Scholar

    [17]

    Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901Google Scholar

    [18]

    Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J, Park B G 2021 Commun. Phys. 4 234Google Scholar

    [19]

    Guo Y, Zhang Y, Lü W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408Google Scholar

    [20]

    Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502Google Scholar

    [21]

    Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901Google Scholar

    [22]

    Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274Google Scholar

    [23]

    Go D, Lee H W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435Google Scholar

    [24]

    Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O, Lee K J 2021 Nat. Commun. 12 6710Google Scholar

    [25]

    Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702Google Scholar

    [26]

    Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28Google Scholar

    [27]

    Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132Google Scholar

    [28]

    Kumar S, Kumar S 2023 Nat. Commun. 14 8185Google Scholar

    [29]

    Xu Y, Zhang F, Fert A, Jaffres H Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043Google Scholar

    [30]

    Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568Google Scholar

    [31]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 Adv. Mater. 29 1603031Google Scholar

    [32]

    Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554Google Scholar

计量
  • 文章访问数:  1875
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-16
  • 修回日期:  2025-04-17
  • 上网日期:  2025-05-06
  • 刊出日期:  2025-07-05

/

返回文章
返回
Baidu
map