搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石烯基晶体管沟道解析模型与电流超敏特性

甄嘉鹏 郭斯琳 张丹萍 巩仁峰 向自强 吕克洪 邱静 刘冠军

引用本文:
Citation:

金刚石烯基晶体管沟道解析模型与电流超敏特性

甄嘉鹏, 郭斯琳, 张丹萍, 巩仁峰, 向自强, 吕克洪, 邱静, 刘冠军
cstr: 32037.14.aps.74.20250009

Channel analysis model and current hypersensitivity characteristics of diamondene-based transistor

ZHEN Jiapeng, GUO Silin, ZHANG Danping, GONG Renfeng, XIANG Ziqiang, LYU Kehong, QIU Jing, LIU Guanjun
cstr: 32037.14.aps.74.20250009
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 新一代检测装备对高灵敏检测器提出了迫切需求. 纵观半导体检测器件的发展现状, 目前传统硅基检测器灵敏度及沟道尺寸已不满足未来所需, 金刚石烯具有高载流子迁移率、宽带隙等优异性能, 其优异的电子特性有望有效提升检测器的灵敏度性能, 为下一代检测器发展提供新途径. 但基于金刚石烯的检测机理还尚不明晰. 基于上述问题, 本文通过建立晶体管电流沟道理论模型, 分析了检测器工作状态下电子流动机制, 进一步结合沟道材料电子特性, 建立一种基于沟道材料电子流动的晶体管电流理论模型, 并开展金刚石烯基晶体管检测器的机理仿真验证、电子特性分析研究, 证明了碳基二维材料——金刚石烯在超敏电子检测中的潜力, 为新一代高性能检测器的研制提供技术基础.
    The new generation of detection equipment urgently requires high-sensitivity detectors. Traditional silicon-based detectors cannot meet the requirements for sensitivity and channel size. Diamondene has excellent performance such as high carrier mobility and wide band gap. Its excellent electronic characteristics are expected to effectively improve the sensitivity of the detector and provide a new way for developing the next generation of detectors. However, the detection mechanism based on diamondene is still unclear. Based on the above problems, the analytical model and mechanism of the transistor channel are first studied. By analyzing the relationship between the surface potential distribution of the current channel and the effective channel size in the working state and the sensitive characteristics of the two-dimensional material electrons of the channel, a theoretical model of the transistor detector is constructed based on the electronic characteristics of the channel material, and the working characteristics of the detector are investigated. The finite element simulation of the working mechanism, potential and electron distribution of the transistor detector is carried out. The simulation results show that the mobility level of the diamondene-based detector is 2.5 times that of the traditional silicon-based detector, which theoretically verifies the hypersensitive detection characteristics of the diamondene-based detector. This study is of great significance in designing and applying a new generation of carbon-based ultra-sensitive detection devices.
      通信作者: 刘冠军, liu342@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52275555)和湖南省自然科学基金(批准号: 2024JJ6476)资助的课题.
      Corresponding author: LIU Guanjun, liu342@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52275555) and the Natural Science Foundation of Hunan Province, China (Grant No. 2024JJ6476).
    [1]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [2]

    Dwivedi P, Soneja S, Dhanekar S 2018 IEEE Sensors New Delhi, India, October 28–31, 2018

    [3]

    Liu K L, Jin B, Han W, et al. 2021 Nat. Electron. 4 906Google Scholar

    [4]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [5]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435Google Scholar

    [6]

    Lu G H, Yu K H, Wen Z H, Chen J H 2013 Nanoscale 5 1353Google Scholar

    [7]

    He Q, Su K, Zhang J F, Ren Z Y, Xing Y F, Zhang J C, Lei Y Q, Hao Y 2022 IEEE T. Electron Dev. 69 1206Google Scholar

    [8]

    Zhen J P, Huang Q S, Shen K, et al. 2024 PNAS 121 e2403726121Google Scholar

    [9]

    Su K, Ren Z Y, Peng Y, Zhang J F, Zhang J C, Zhang Y C, He Q, Zhang C F, Hao Y 2020 IEEE Access 8 20043Google Scholar

    [10]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nature Electronics 5 37

    [11]

    Zhang Q, Fang T, Xing H, Seabaugh A, Jena D 2008 IEEE Electron. Device Lett. 29 1344Google Scholar

    [12]

    Cheli M, Michetti P, Iannaccone G 2010 IEEE Electron. Devices Trans 57 1936Google Scholar

    [13]

    Liang G, Neophytou N, Lundstrom M S, Nikonov D E 2008 J. Comput. Electron 7 394Google Scholar

    [14]

    Xing H L, Fang T, Konar A, Jena D 2007 Appl. Phys. Lett. 91 092109Google Scholar

    [15]

    Hanson G W 2008 J. Appl. Phys. 103 064302Google Scholar

    [16]

    Jabbarzadeh F, Heydari M, Sharif A H 2019 Mater. Res. Express 6 086209Google Scholar

    [17]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222Google Scholar

    [18]

    Xu W, Zhu Z H, Liu K, et al. 2015 Opt. Express 23 5147Google Scholar

    [19]

    Luo X G, Teng Q, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R 74 351Google Scholar

    [20]

    Hua L, Gan X T, Mao D, Zhao J L 2017 Photonics Res. 5 162Google Scholar

    [21]

    Lima A W, Sombra A 2014 Opt. Commun. 321 150Google Scholar

    [22]

    Frank S 2010 Nat. Nanotech. 5 487Google Scholar

    [23]

    季启政, 刘峻, 杨铭, 马贵蕾, 胡小锋, 刘尚合 2023 电子学报 51 1486

    Ji Q Z, Liu J, Yang M, Ma G L, Hu X F, Liu S H 2023 Chinese Journal of Electronics 51 1486

    [24]

    Chakraborty I, Roy S, Dixit V, Debnath K 2021 Photonic Nanostruct. 43 100865Google Scholar

    [25]

    Jabbarzadeh F, Habibzadeh S A 2019 JOSA B 36 690Google Scholar

    [26]

    Liu M, Yin X B, Erick U A, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [27]

    Heidari M, Orouji A A, Bozorgi S A 2023 J Mater Sci: Mater Electron 34 1708Google Scholar

    [28]

    Santini T, Morand S, Fouladirad M, et al. 2014 Microelectronics Reliability 54 1718Google Scholar

    [29]

    Sreevani A, Swarnakar S, Krishna S V 2022 Silicon 14 9223Google Scholar

  • 图 1  晶体管工作电子流动原理图

    Fig. 1.  Schematic diagram of the electron flow principle of the transistor.

    图 2  折射率实部(a)和虚部(b)随费米能量的变化关系

    Fig. 2.  Relationship between the real part (a) and the imaginary part (b) of the refractive index with Fermi energy.

    图 3  晶体管内截面电势分布随栅压的变化情况

    Fig. 3.  Distribution of the cross-section potential distribution in the transistor with the gate voltage.

    图 4  晶体管内截面电势分布随漏压的变化情况

    Fig. 4.  Distribution of the cross-section potential distribution in the transistor with the drain voltage.

    图 5  电子(a)和空穴(b)随栅压的分布关系

    Fig. 5.  Distribution of electrons (a) and holes (b) with gate voltage.

    图 6  电子(a)和空穴(b)随漏压的分布关系

    Fig. 6.  Distribution of electrons (a) and holes (b) with drain voltage.

    图 7  硅基和金刚石烯基检测器的电势、电子和空穴分布对比

    Fig. 7.  Comparison of electric potential, electron, and hole distributions of silicon-based and diamondene-based transistors.

    图 8  硅基(a)和金刚石烯基(b)检测器的检测电流性能对比

    Fig. 8.  Comparison of the current performance of silicon-based (a) and diamondene-based (b) transistors.

    图 9  硅基与金刚石烯基$ \log {I_1}{\text{-}}{V_{\text{g}}} $图

    Fig. 9.  The $ \log {I_1}{\text{-}}{V_{\text{g}}} $ of silicon-based and diamondene-based transistors.

    表 1  金刚石烯与硅沟道材料仿真参数

    Table 1.  Simulation parameters of diamondene and silicon channel materials.

    材料金刚石烯
    带隙/eV2.71.12
    电子迁移率/m–345001450
    空穴迁移率/m–31000500
    电子亲和能/eV3.644.05
    下载: 导出CSV
    Baidu
  • [1]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [2]

    Dwivedi P, Soneja S, Dhanekar S 2018 IEEE Sensors New Delhi, India, October 28–31, 2018

    [3]

    Liu K L, Jin B, Han W, et al. 2021 Nat. Electron. 4 906Google Scholar

    [4]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [5]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435Google Scholar

    [6]

    Lu G H, Yu K H, Wen Z H, Chen J H 2013 Nanoscale 5 1353Google Scholar

    [7]

    He Q, Su K, Zhang J F, Ren Z Y, Xing Y F, Zhang J C, Lei Y Q, Hao Y 2022 IEEE T. Electron Dev. 69 1206Google Scholar

    [8]

    Zhen J P, Huang Q S, Shen K, et al. 2024 PNAS 121 e2403726121Google Scholar

    [9]

    Su K, Ren Z Y, Peng Y, Zhang J F, Zhang J C, Zhang Y C, He Q, Zhang C F, Hao Y 2020 IEEE Access 8 20043Google Scholar

    [10]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nature Electronics 5 37

    [11]

    Zhang Q, Fang T, Xing H, Seabaugh A, Jena D 2008 IEEE Electron. Device Lett. 29 1344Google Scholar

    [12]

    Cheli M, Michetti P, Iannaccone G 2010 IEEE Electron. Devices Trans 57 1936Google Scholar

    [13]

    Liang G, Neophytou N, Lundstrom M S, Nikonov D E 2008 J. Comput. Electron 7 394Google Scholar

    [14]

    Xing H L, Fang T, Konar A, Jena D 2007 Appl. Phys. Lett. 91 092109Google Scholar

    [15]

    Hanson G W 2008 J. Appl. Phys. 103 064302Google Scholar

    [16]

    Jabbarzadeh F, Heydari M, Sharif A H 2019 Mater. Res. Express 6 086209Google Scholar

    [17]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222Google Scholar

    [18]

    Xu W, Zhu Z H, Liu K, et al. 2015 Opt. Express 23 5147Google Scholar

    [19]

    Luo X G, Teng Q, Lu W B, Ni Z H 2013 Mater. Sci. Eng. R 74 351Google Scholar

    [20]

    Hua L, Gan X T, Mao D, Zhao J L 2017 Photonics Res. 5 162Google Scholar

    [21]

    Lima A W, Sombra A 2014 Opt. Commun. 321 150Google Scholar

    [22]

    Frank S 2010 Nat. Nanotech. 5 487Google Scholar

    [23]

    季启政, 刘峻, 杨铭, 马贵蕾, 胡小锋, 刘尚合 2023 电子学报 51 1486

    Ji Q Z, Liu J, Yang M, Ma G L, Hu X F, Liu S H 2023 Chinese Journal of Electronics 51 1486

    [24]

    Chakraborty I, Roy S, Dixit V, Debnath K 2021 Photonic Nanostruct. 43 100865Google Scholar

    [25]

    Jabbarzadeh F, Habibzadeh S A 2019 JOSA B 36 690Google Scholar

    [26]

    Liu M, Yin X B, Erick U A, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [27]

    Heidari M, Orouji A A, Bozorgi S A 2023 J Mater Sci: Mater Electron 34 1708Google Scholar

    [28]

    Santini T, Morand S, Fouladirad M, et al. 2014 Microelectronics Reliability 54 1718Google Scholar

    [29]

    Sreevani A, Swarnakar S, Krishna S V 2022 Silicon 14 9223Google Scholar

计量
  • 文章访问数:  2657
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 修回日期:  2025-01-08
  • 上网日期:  2025-02-09
  • 刊出日期:  2025-04-05

/

返回文章
返回
Baidu
map