搜索

x
中国物理学会期刊

大密度比气泡在多孔介质通道内上升行为的三维介观数值模拟

CSTR: 32037.14.aps.74.20241678

Three-dimensional mesoscopic numerical simulation of the rising behavior of bubbles with large density ratio in porous media channels

CSTR: 32037.14.aps.74.20241678
PDF
HTML
导出引用
  • 本文基于格子Boltzmann方法, 使用三维数值模拟研究了复杂多孔介质中大密度比气泡运动行为, 重点探讨Eötvös数 (Eo)、接触角 (θ) 和Reynolds数(Re)耦合作用对气泡速度、形态演化及停滞现象的影响规律. 研究发现, 在多孔介质中, 接触角增大降低了气泡速度, 并加剧速度波动, 使气泡趋于扁平化. Eo的增大则可显著抑制扁平化趋势, 稳定气泡速度, 使其形态更接近子弹头状. 当接触角较大且Eo较小时, 黏附力增强会导致气泡停滞于多孔介质内部. 此外, Re与接触角在阻力构成中呈竞争关系, 对气泡的平均速度具有相互增强的作用, 而在较大接触角下, Re增大会导致气泡尾部不稳定并易断裂. 研究还表明, 低Eo和低Re条件下气泡速度随Eo增大而下降, 而在高Eo和高Re条件下则呈相反趋势, 这一现象源于气泡形态的不稳定性对浮力和速度的影响.

     

    In this paper, a three-dimensional numerical simulation of the motion behavior of bubbles in complex porous medium channels in a large density ratio gas-liquid system is conducted based on the lattice Boltzmann method. The Eötvös number (Eo), contact angle (θ) and Reynolds number (Re) are systematically discussed with emphasis on the law of their coupling effect affecting bubble velocity, morphological evolution and stagnation phenomenon. The results show that the increase of contact angle will reduce the bubble velocity but intensify the velocity fluctuations, making the bubbles tend flat, while the increase of Eo number significantly suppresses the influence of the contact angle, stabilizes the bubble velocity, and makes its shape close to a bullet head shape. When the contact angle is large (θ > 90°) and the Eo number is small (Eo < 10), the adhesion force is significantly enhanced and the bubbles will stagnate inside the porous medium. Re number and contact angle compete in the generation of resistance, and have mutually reinforcing effects on the average velocity of bubbles and interface evolution. The larger contact angle makes the deformation of the bubble tail intensify and becomes unstable, and as the Re number further increases, the tail tentacles are more likely to break, forming residual bubbles. It is also found in this work that the coupling between Eo number and Re number significantly affects bubble behavior in motion and morphological evolution. Under the conditions of high Eo number (Eo ≥ 25) and high Re number (Re ≥14), the bubble velocity increases with the Eo number rising, and the trend becomes more significant as the Re number increases; while under the conditions of low Eo number (Eo < 25) and low Re number (Re < 14), the speed change pattern is completely opposite. This phenomenon is due to the high instability of bubble morphology under the conditions of high Eo number and high Re number, which affects the buoyancy and speed performance. The research results provide important guidance for optimizing the flow behavior of bubbles in porous medium.

     

    目录

    /

    返回文章
    返回
    Baidu
    map