搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优势提纯技术的片上量子密钥分发实验验证

章瑞 田雨 张斌 陈高辉 丁华建 周星宇 王琴

引用本文:
Citation:

基于优势提纯技术的片上量子密钥分发实验验证

章瑞, 田雨, 张斌, 陈高辉, 丁华建, 周星宇, 王琴
cstr: 32037.14.aps.74.20241375

Experimental verification of on-chip quantum key distribution based on advantage distillation

ZHANG Rui, TIAN Yu, ZHANG Bin, CHEN Gaohui, DING Huajian, ZHOU Xingyu, WANG Qin
cstr: 32037.14.aps.74.20241375
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 优势提纯提供了一种从弱关联性比特对中提取强关联性比特对的有效方法, 已被广泛应用于多种量子密钥分发协议. 然而, 该方法的增益效果主要体现在远距离密钥传输中, 目前在实验系统中尚未得到充分验证. 本文将优势提纯方法应用于三强度诱骗态BB84协议, 并基于SiO2的非对称马赫-曾德尔干涉仪构建实验平台进行验证. SiO2光波导芯片具有低耦合损耗和低波导传输损耗的优点. 实验结果表明, 在105 km的传输距离下, 系统安全密钥率达到了59 bits/s, 充分证明了优势提纯方法在提升量子密钥分发系统性能方面的重要作用.
    Quantum key distribution (QKD) has been extensively studied for practical applications. Advantage distillation (AD) represents a key technique to extract highly correlated bit pairs from weakly correlated ones, thus improving QKD protocol performance, particularly in large-error scenarios. However, its practical implementation remains under-explored. In this study, the AD is integrated into the three-intensity decoy-state BB84 protocol and its performance is demonstrated on a high-speed phase-encoding platform. The experimental system employs an asymmetric Mach-Zehnder interferometer (AMZI) fabricated on a silicon dioxide optical waveguide chip for phase encoding, which is benefited from its low coupling loss and minimum waveguide transmission loss. Phase-randomized weak coherent pulses, generated by a distributed feedback laser at 625 MHz, are modulated into decoy states of varying intensities. The signals are encoded via an AMZI and attenuated to single-photon levels before transmission. At the receiver, another AMZI demodulates the signals detected by avalanche photodiodes in gated mode. Experiments conducted at 50 km and 105 km demonstrate secure key rates of 104 kbits/s and 59 bits/s, respectively. The results at shorter distances closely match theoretical predictions, while slight deviations at 105 km are attributed to signal attenuation and noise. Despite these challenges, the results obtained at 105 km highlight the effectiveness of AD in enhancing secure key rates in the large-error scenario. This study confirms the potential of AD in extending secure communication range of QKD. By leveraging the high integration and scalability of silicon dioxide photonic chips, the proposed system lays a foundation for large-scale QKD deployment, paving the way for developing advanced protocols and real-world quantum networks.
      通信作者: 王琴, qinw@njupt.edu.cn
    • 基金项目: 江苏省重点研发计划产业前瞻与关键核心技术项目(批准号: BE2022071)资助的课题.
      Corresponding author: WANG Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key R&D Program, China (Grant No. BE2022071).
    [1]

    Bennett C H, Brassard G 2014 Theoret. Comput. Sci. 560 7Google Scholar

    [2]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [3]

    Shor P W 2000 Phys. Rev. Lett. 85 441Google Scholar

    [4]

    Mayers D 2001 Journal of the ACM 48 3Google Scholar

    [5]

    Wang X B 2005 Phy. Rev. Lett. 94 230503Google Scholar

    [6]

    Lo H K, Ma X F, Chen K 2005 Phy. Rev. Lett. 94 230504Google Scholar

    [7]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [8]

    Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar

    [9]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A 2018 Nature 557 400Google Scholar

    [10]

    Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar

    [11]

    Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 034053Google Scholar

    [12]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar

    [13]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [14]

    Zeng P, Zhou H Y, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [15]

    Xie Y M, Lu Y S, Weng C X, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [16]

    Maurer U M 1999 IEEE Trans. Inf. Theory 39 733Google Scholar

    [17]

    Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar

    [18]

    Li H W, Zhang C M, Jiang M S, Cai Q Y 2022 Commun. Phys. 5 53Google Scholar

    [19]

    Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C, Han Z F 2022 New J. Phys. 24 073049Google Scholar

    [20]

    Li H W, Wang R Q, Zhang C M, Cai Q Y 2023 Quantum 7 1201Google Scholar

    [21]

    Zhang K, Liu J, Ding H, Zhang C H, Wang Q 2023 Entropy 25 1174Google Scholar

    [22]

    Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiѐres F, Li M J, Nolan D, Martin A, Zbinden H 2018 Phys. Rev. Lett. 121 190502Google Scholar

    [23]

    Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A, Dixon A, Lavelle E, Dynes J, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A 2018 J. Light. Technol. 36 3427Google Scholar

    [24]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [25]

    Zhang G W, Chen W, Fan-Yuan G J, Zhang L, Wang F X, Wang S, Yin Z Q, He D Y, Liu W, An J M, Guo G C, Han Z F 2022 Sci. China Inf. Sci. 65 200506Google Scholar

    [26]

    Wu D, Zhang C X, Zhang J S, Wang Y, Chen W, Wu Y D, An J M 2024 Opt. Commun. 564 130597Google Scholar

    [27]

    Zhu J L, Zhou X Y, Ding H J, Liu J Y, Zhang C H, Li J, An J M, Wang Q 2025 Phys. Rev. A 111 012608Google Scholar

  • 图 1  优势提纯方法的流程图

    Fig. 1.  Flow chart of the advantage distillation.

    图 2  BB84 QKD系统实验装置结构示意图, 其中Laser为激光器模块, IM为强度调制器, AMZI为非对称马赫-曾德尔干涉仪, APD为探测器模块, TDC为时间数字转换器

    Fig. 2.  Schematic diagram of the experimental setup for BB84 QKD system, where Laser is the laser module, IM is the intensity modulator, AMZI is the low-loss unbalanced Mach-Zehnder interferometer chip, APD denotes the avalanche photodiode detector module, and TDC is the time-to-digital converter.

    图 3  非对称马赫-曾德尔干涉仪原理图

    Fig. 3.  Schematic diagram of the asymmetric Mach-Zehnder interferometer.

    图 4  非对称马赫-曾德尔干涉仪实物图

    Fig. 4.  Physical picture of the asymmetric Mach-Zehnder interferometer.

    图 5  基于AD技术的BB84协议的理论与实验密钥率对比图

    Fig. 5.  Comparison between theoretical and experimental key rates of BB84 protocol based on AD technology.

    图 6  基于AD技术的BB84协议的理论与实验最优值$ b $

    Fig. 6.  Theoretical and experimental optimal values $ b $ of BB84 protocol based on AD technology.

    表 1  实验数据

    Table 1.  Experimental data.

    50 km (10 dB) 105 km (21 dB)
    类型 理论数值 实验数据 理论数值 实验数据
    $u$ 0.66653 0.64151
    $v$ 0.04537 0.07259
    ${P_u}$ 0.97000 0.94795
    ${P_v}$ 0.02190 0.03627
    $ Q_{u} $ $ 7.195\times {10}^{-4} $ $ 7.1084\times {10}^{-4} $ $ 5.692\times {10}^{-5} $ $ 5.2736\times {10}^{-5} $
    $ Q_{v} $ $ 8.006\times {10}^{-5} $ $ 7.5179\times {10}^{-5} $ $ 1.714\times {10}^{-5} $ $ 1.6844\times {10}^{-5} $
    $ E_{u} $ $ 0.01403 $ $ 0.01220 $ $ 0.06510 $ $ 0.085985 $
    $ E_{v} $ $ 0.04623 $ $ 0.05180 $ $ 0.1930 $ $ 0.2109 $
    $ Y_{1} $ $ 9.481\times {10}^{-4} $ $ 8.756\times {10}^{-4} $ $ 7.719\times {10}^{-5} $ $ 7.7438\times {10}^{-5} $
    $ e_{1} $ $ 0.02064 $ $ 0.02562 $ $ 0.0715 $ $ 0.0974 $
    $ R $ $ 115700 $ $ 104260 $ $ 389.0636 $ $ 59.3501 $
    下载: 导出CSV
    Baidu
  • [1]

    Bennett C H, Brassard G 2014 Theoret. Comput. Sci. 560 7Google Scholar

    [2]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [3]

    Shor P W 2000 Phys. Rev. Lett. 85 441Google Scholar

    [4]

    Mayers D 2001 Journal of the ACM 48 3Google Scholar

    [5]

    Wang X B 2005 Phy. Rev. Lett. 94 230503Google Scholar

    [6]

    Lo H K, Ma X F, Chen K 2005 Phy. Rev. Lett. 94 230504Google Scholar

    [7]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [8]

    Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar

    [9]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A 2018 Nature 557 400Google Scholar

    [10]

    Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar

    [11]

    Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 034053Google Scholar

    [12]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar

    [13]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [14]

    Zeng P, Zhou H Y, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [15]

    Xie Y M, Lu Y S, Weng C X, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [16]

    Maurer U M 1999 IEEE Trans. Inf. Theory 39 733Google Scholar

    [17]

    Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar

    [18]

    Li H W, Zhang C M, Jiang M S, Cai Q Y 2022 Commun. Phys. 5 53Google Scholar

    [19]

    Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C, Han Z F 2022 New J. Phys. 24 073049Google Scholar

    [20]

    Li H W, Wang R Q, Zhang C M, Cai Q Y 2023 Quantum 7 1201Google Scholar

    [21]

    Zhang K, Liu J, Ding H, Zhang C H, Wang Q 2023 Entropy 25 1174Google Scholar

    [22]

    Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiѐres F, Li M J, Nolan D, Martin A, Zbinden H 2018 Phys. Rev. Lett. 121 190502Google Scholar

    [23]

    Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A, Dixon A, Lavelle E, Dynes J, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A 2018 J. Light. Technol. 36 3427Google Scholar

    [24]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [25]

    Zhang G W, Chen W, Fan-Yuan G J, Zhang L, Wang F X, Wang S, Yin Z Q, He D Y, Liu W, An J M, Guo G C, Han Z F 2022 Sci. China Inf. Sci. 65 200506Google Scholar

    [26]

    Wu D, Zhang C X, Zhang J S, Wang Y, Chen W, Wu Y D, An J M 2024 Opt. Commun. 564 130597Google Scholar

    [27]

    Zhu J L, Zhou X Y, Ding H J, Liu J Y, Zhang C H, Li J, An J M, Wang Q 2025 Phys. Rev. A 111 012608Google Scholar

计量
  • 文章访问数:  3457
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-11-19
  • 上网日期:  2024-12-25
  • 刊出日期:  2025-02-20

/

返回文章
返回
Baidu
map