搜索

x
中国物理学会期刊

可调谐的声学型石墨烯等离激元增强纳米红外光谱

Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy

CSTR: 32037.14.aps.73.20240489
PDF
HTML
导出引用
  • 纳米红外光谱 (nano-infrared spectroscopy, nano-IR) 技术能够突破光的衍射极限, 实现约10 nm空间分辨率的红外光谱检测, 是研究纳米尺度物质化学成分和结构的重要技术手段. 然而, 由于纳米物质的尺寸与红外光的波长存在较大失配, 导致其红外吸收信号微弱. 本文理论提出了一种基于纳米腔室的声学型石墨烯等离激元 (nanocavity-acoustic graphene plasmon, n-AGP) 可调谐增强nano-IR检测平台. 该平台可实现超高光场压缩 (模式体积Vn-AGP \approx 10–7 \lambda _0^3 , λ0 = 6.25 μm)和约50倍电场增强的n-AGP激发. 通过调控金纳米腔室结构和石墨烯费米能级, 我们实现了n-AGP的宽频段动态调控(1290—2124 cm–1). 此外, 由于n-AGP的电磁场高度局域在纳米腔室内, 具有高的探测灵敏度, 可实现单个蛋白质颗粒酰胺I带和酰胺II带振动指纹特征的探测 (灵敏度提高约9倍). 这一基于n-AGP的增强结构拓展了nano-IR技术在单分子尺度的表征能力, 可广泛应用于生物、催化等领域.

     

    Nano-infrared spectroscopy (nano-IR) technology can exceed the diffraction limit of light, achieving infrared spectroscopic detection with a spatial resolution of about 10 nm, which is an important technical means for studying the chemical composition and structure of molecules on a nanoscale. However, the weak infrared absorption signals of nanoscale materials pose a significant challenge due to the large mismatch between their dimensions and the wavelength of infrared light. The infrared absorption signals of molecular vibrational modes are proportional to the squares of the electromagnetic field intensities at their positions, implying that higher electromagnetic field intensity can significantly improve the sensitivity of molecular detection. Acoustic graphene plasmons (AGPs), excited by the interaction between free charges in graphene and image charges in metal, exhibit strong optical field localization and electromagnetic field enhancement. These properties make AGPs an effective platform for enhancing nano-IR detection sensitivity. However, the fabrication of graphene nanostructures often introduces numerous edge defects due to the limitations of nanofabrication techniques, significantly reducing the electromagnetic field enhancement observed in experiments. Here, we use finite element simulation to theoretically propose a tunable enhanced nano-IR detection platform based on nanocavity-acoustic graphene plasmons (n-AGPs), which utilizes a graphene/air gap/gold nanocavity structure. This platform avoids needing the nanofabrication of graphene, thereby preventing defects and contamination from being introduced in processes such as electron beam exposure and plasma etching. By plotting the dispersion of n-AGP, it is found that n-AGP has a high wavelength compression capability comparable to AGP (λ0/λAGP = 48). Additionally, due to the introduction of the gold nanocavity structure, n-AGP possess an extremely small mode volume (Vn-AGP ≈ 10–7 \lambda _0^3 , λ0 = 6.25 μm). By calculating the electric field intensity distribution (|Enorm|) and the normalized electric field intensity spectrum (i.e. the relationship between frequency and |Ez|/|Ez0|) of the n-AGP structure, it is evident that due to the high electron density on the gold surface, electromagnetic waves can be reflected from the boundaries of the gold nanocavity and resonantly enhanced within the nanocavity. At the resonant frequency of n-AGP (1800 cm–1), the electric field inside the cavity is enhanced by about 50 times. In contrast, at similar resonant frequencies, the electric field enhancement factor of Graphene plasmon (resonant frequency 1770 cm–1) and AGP (resonant frequency 1843 cm–1) are approximately 3 and 2 times, respectively, significantly lower than that of n-AGP. Furthermore, by placing a protein film (60 nm wide and 10 nm high) under the graphene, we calculate the spectral dip depths caused by Fano resonance between n-AGP and AGP with the vibrational modes of protein molecules, thereby validating the enhancement factors of different modes for protein vibrational mode infrared absorption. For the amide-I band of proteins, the detection sensitivity of n-AGP is about 60 times higher than that of AGP. Additionally, we find that by adjusting the structural parameters of the gold nanocavity, including cavity depth, width, and surface roughness, the response frequency band of n-AGP can be modulated (from 1290 to 2124 cm–1). Specifically, as the cavity depth increases, the electric field enhancement of n-AGP is improved, and the wavelength compression capability of n-AGP decreases, causing the resonant frequency to be blue-shifted (from 1793 to 2124 cm–1). As the cavity width increases, the resonant frequency of n-AGP is red-shifted (from 1793 to 1290 cm–1), and the effectiveness of the gold nanocavity boundary in reflecting the resonant electric field within the cavity diminishes, resulting in a decrease in the electric field enhancement factor. With the gradual increase in the roughness of the gold nanocavity bottom, the effective depth of the gold nanocavity increases, causing the n-AGP resonant frequency to be blue-shifted (from 1793 to 1861 cm–1) and the electric field enhancement factor to increase. Moreover, by adjusting the Fermi level of graphene (from 0.3 to 0.6 eV), we achieve dynamic tuning of n-AGP (from 1355 to 1973 cm–1). As the Fermi level of graphene increases, the wavelength compression capability of n-AGP decreases, resulting in a blue-shift in the resonant frequency. Finally, by optimizing the structural parameters and Fermi level of n-AGP, and placing protein particles of different sizes (20, 15, and 10 nm high, all 10 nm wide) into the graphene/gold nanocavity structure, we verify the protein detection capability of n-AGP-enhanced nano-IR. We find that n-AGP can detect the vibrational fingerprint features of the amide-I band and amide-II band. For protein films (60 nm wide and 10 nm high), the sensitivity increased by approximately 300 times, and for a single protein particle (10 nm wide and 10 nm high), the sensitivity increased by approximately 9 times. This enhanced structure based on n-AGP holds promise for providing an important detection platform for nanoscale material characterization and single-molecule detection, with broad application potential in biomedicine, materials science, and geology.

     

    目录

    /

    返回文章
    返回
    Baidu
    map