搜索

x
中国物理学会期刊

类铝离子钟跃迁能级的超精细结构常数和朗德g因子

Hyperfine interaction constants and Landé g factors of clock states of Al-like ions

CSTR: 32037.14.aps.72.20230940
PDF
HTML
导出引用
  • 本文利用多组态Dirac-Hartree-Fock方法计算了类铝等电子序列从Si+到Kr23+离子基组态3s23p 2P1/2, 3/2能级的超精细结构常数和朗德g因子. 通过系统评估电子关联效应对Si+和Co14+离子中所关心原子参数的影响, 尤其是与内壳层电子相关的关联效应, 构建了可靠精确的计算模型, 除Si+离子外, 超精细结构常数和g因子的计算误差分别控制在1%左右和10–5的量级. 此外, 进一步分析了超精细结构常数中电子部分矩阵元和g因子随原子序数Z的变化规律, 并拟合了这些物理量与Z的定量依赖关系, 利用拟合公式可以快速计算类铝离子在14 ≤ Z ≤ 54区间内任意同位素的超精细结构常数和g因子.

     

    The highly charged Al-like ions are the potential candidates for the next-generation atomic optical clocks, and their atomic parameters are also useful in plasma and nuclear physics. In the present work, the hyperfine interaction constants and Landé g factors of 3s23p 2P1/2, 3/2 states in the ground configuration for Al-like ions in a range between Si+ and Kr23+ ions are calculated by using the multi-configuration Dirac-Hartree-Fock method. Owing to the fact that hyperfine interaction constant is sensitive to electron correlation effects, we systematically investigate its influence on the hyperfine interaction constants, particularly for the high-order correlation related to the 2p electrons. According to this investigation and by taking into account the Breit interaction and QED corrections, we achieve the computational accuracy at a level of 1% and 10–5 for the hyperfine interaction constants and Landé g factors, respectively, except for the Si+ ion. Furthermore, the electronic parts of hyperfine interaction constants and g factors are fitted with functions of atomic number. The deviations between these fitted formulas and the ab initio calculations are less than 2% and 10–5 for the hyperfine interaction constants and the g factors, respectively. As a result, the hyperfine interaction constants and g factors of all isotopes can be determined for Al-like ions with 14 ≤ Z ≤ 54.

     

    目录

    /

    返回文章
    返回
    Baidu
    map