搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信道处理的时间反演幅度可调控多目标聚焦方法

闫轶著 丁帅 韩旭 王秉中

引用本文:
Citation:

基于信道处理的时间反演幅度可调控多目标聚焦方法

闫轶著, 丁帅, 韩旭, 王秉中

Channel processing-based time-reversal method for multi-target tunable focusing

Yan Yi-Zhu, Ding Shuai, Han Xu, Wang Bing-Zhong
cstr: 32037.14.aps.72.20230547
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 在微波无线输能领域中, 如何实现多目标点的电磁波可调控聚焦是一个值得关注的问题. 本文提出了一种基于时间反演多径环境下的多目标电磁波聚焦的新方法. 该方法基于多个输出之间的信道相关性, 将输入和输出节点之间的信道信息进行提取、筛选、加权和重构后在单个发送端上重建反演信号, 利用时间反演的空间选择特性实现均衡的电磁波聚焦. 基于这种方法, 设计了两组在多径环境下的实验. 实验结果表明, 通过这种方法可以使弱相关模型下不同输出端口获得均衡稳定的聚焦峰, 在强相关模型下使不同输出端口的分辨效果进一步提升. 此外, 6个额外的实验验证了所提出的方法可以在弱相关或强相关的单输入多输出信道模型下, 通过改变不同的权值灵活地调整不同接收端的输出峰值电压比.
    Achieving tunable focus of electromagnetic field energy at multiple target points is a critical challenge in the wireless power transfer (WPT) domain. In order to solve this problem, some techniques such as optimal constrained power focusing (OCPF) and time reversal (TR) have been proposed. The former presents limited practical applicability while the latter is noteworthy for its adaptive spatiotemporal synchronous focusing characteristics. However, the time reversal mirror (TRM) method necessitates intricate pretesting and has highly complex systems. In this study, we introduce a novel channel processing method, named channel extraction, selection, weighting, and reconstruction (CESWR), to attain balanced power distribution for multiple users, featuring low complexity, high computability, and rapid convergence. Unlike the traditional TR approach, our proposed method, based on channel correlation considerations, filters the channel impulse response (CIR) for multiple targets, dividing them into distinct characteristic and similar components for each target. This method ensures focused generation at both receiving ends while facilitating high-precision regulation of the peak voltage of the received signal. Furthermore, this study implements a rigorous examination of the linearity intrinsic to the proposed method, explicating a singular correspondence between the tuning of theoretical weights and the resultant outcomes. In order to verify the efficacy of this method, we construct a single-input multiple-output time-reversal cavity (SIMO-TRC) system. Subsequent experiments conducted for both loosely and tightly correlated models, provide invaluable insights. Evidently, in the loosely correlated model, the CESWR method exhibits proficiency in attaining a peak voltage ratio (PVR) of nearly 1.00 at the two receivers, with a minuscule numerical discrepancy of merely $8 \times {10^{ - 6}}$ mV. In stark contrast, under the tightly correlated model, the CESWR method demonstrates an enhanced ability to differentiate between two targets, thus offering a noticeable improvement over the classic single-target TR method.
      通信作者: 丁帅, uestcding@uestc.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: A03019023801088, ZYGX2019Z016, ZYGX2021YGLH025)和四川省科技支撑计划(批准号: 2022YFS0193)资助的课题.
      Corresponding author: Ding Shuai, uestcding@uestc.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A03019023801088, ZYGX2019Z016, ZYGX2021YGLH025) and the Science and Technology Support Program of Sichuan Province, China (Grant No. 2022YFS0193).
    [1]

    Wang B, Wu Y, Han F, Yang Y H, Liu K R 2011 IEEE J. Sel. Areas Commun. 29 1698Google Scholar

    [2]

    Han F, Yang Y H, Wang B, Wu Y, Liu K R 2012 IEEE Global Telecommunications Conference-GLOBECOM 2011 Houston, TX, USA, December 5–9, 2011 p1

    [3]

    Nguyen H T, Andersen J B, Pedersen G F, Kyritsi P, Eggers P C 2006 IEEE Trans. Wireless Commun. 5 2242Google Scholar

    [4]

    Zhao D, Zhu M 2006 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar

    [5]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [6]

    Li B, Liu S, Zhang H L, Hu B J, Zhao D, Huang Y 2019 IEEE Access 7 114897Google Scholar

    [7]

    Bellizzi G G, Iero D A, Crocco L, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar

    [8]

    Iero D A, Crocco L, Isernia T 2013 IEEE Trans. Antennas Propag. 62 814Google Scholar

    [9]

    Lerosey G, De Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar

    [10]

    Carminati R, Pierrat R, De Rosny J, Fink M 2007 Opt. Lett. 32 3107Google Scholar

    [11]

    Hong S K, Lathrop E, Mendez V M, Kim J 2015 Prog. Electromagn. Res. 153 113Google Scholar

    [12]

    Hong S, Park H 2018 Electron. Lett. 54 768Google Scholar

    [13]

    Drikas Z B, Addissie B D, Mendez V M, Raman S 2020 IEEE Trans. Microwave Theory Tech. 68 3355Google Scholar

    [14]

    Li B, Zhang Q, Zhao D, Yang Y 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) Beijing, China, September 1–4, 2022 p356

    [15]

    Drikas Z B, Addissie B D, Mendez V M, Raman S 2021 IEEE Microwave Wireless Compon. Lett. 32 177Google Scholar

    [16]

    Wang K, Shao W, Ou H, Wang B Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 2828Google Scholar

    [17]

    Razzaghi R, Lugrin G, Manesh H, Romero C, Paolone M, Rachidi F 2013 IEEE Trans. Power Delivery 28 1663Google Scholar

    [18]

    Codino A, Wang Z, Razzaghi R, Paolone M, Rachidi F 2017 IEEE Trans. Electromagn. Compat. 59 1601Google Scholar

    [19]

    Sun J, Yang Q, Cui H, Ran J, Liu H 2021 IEEE Trans. Electromagn. Compat. 63 1921Google Scholar

    [20]

    Ding S, Fang Y, Zhu J F, Yang Y, Wang B Z 2019 IEEE Trans. Antennas Propag. 67 1386Google Scholar

    [21]

    Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar

    [22]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [23]

    Derode A, Tourin A, Fink M 1999 J. Appl. Phys. 85 6343Google Scholar

    [24]

    陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫 2022 71 024101Google Scholar

    Lu X C, Qiu Y, Tian J, Wang H B, Jiang L, Chen X 2022 Acta Phys. Sin. 71 024101Google Scholar

    [25]

    Cramer R M, Scholtz R A, Win M Z 2002 IEEE Trans. Antennas Propag. 50 561Google Scholar

    [26]

    Lerosey G, De Rosny J, Tourin A, Fink M 2007 Science 315 1120Google Scholar

  • 图 1  基于CESWR方法的TR方法示意图

    Fig. 1.  Schematic of the principle of proposed SIMO-TRC system based on the TR using CESWR method.

    图 2  腔体和UWB单极子天线实物 (a) TRC的结构和尺寸大小; (b) 腔体内部结构和实验使用的超宽带天线

    Fig. 2.  Cavity and UWB monopole antenna: (a) Structure dimensions and appearance of the cavity; (b) position of the antenna inside the cavity and the ultrawideband monopole antenna used in the experiment.

    图 3  实验流程示意图, 其中$x(t)$是发送的高斯脉冲信号, 峰值电压为0.6 V; 红色框内的步骤需要进行多次

    Fig. 3.  Schematic of the experiment set up. $x(t)$ is the transmitted Gaussian pulse signal with peak voltage of 0.6 V; the steps in the red circle need to be operated several times.

    图 4  信道提取和筛选后的结果 (a) Rx1的接收信号和Rx2的接收信号; (b) 信道提取结果(RMSE = 0.2%); (c) 信道筛选后Rx1和Rx2各自的特征部分; (d) 信道筛选后的相似部分

    Fig. 4.  Receive signals after transmitting the pulse and processing results: (a) Receive signals of Rx1 plotted in blue and Rx2 plotted in yellow; (b) channel extraction results (RMSE = 0.2%); (c) characteristic parts after channel selecting; (d) the similar part after channel selecting.

    图 5  (a)经典TR操作的接收信号; (b) 基于CESWR的TR操作的接收信号

    Fig. 5.  (a) Received signals of classical TR; (b) received signals of TR using CESWR method.

    图 6  强相关实验示意图 (d表示两个接受天线之间的距离)

    Fig. 6.  Schematic diagram of the tight correlation experiment (d represents the distance between the two receiving antennas).

    表 1  不同的加权系数对应的峰值电压比

    Table 1.  Peak voltage ratio of different coefficiesnts

    峰值电压比αβ
    1.0000.200.50
    1.3810.150.50
    0.6960.250.50
    0.7660.200.40
    1.2620.200.60
    0.3671.001.00
    下载: 导出CSV

    表 2  强相关实验峰值电压比和加权系数结果对比

    Table 2.  Comparison of peak voltage ratio and coefficients in tight-correlation experiments.

    峰值电压比αβ
    3.74101.00
    0.4661.000
    3.8120.100.90
    3.8160.080.92
    0.4230.900.10
    0.4180.920.08
    下载: 导出CSV
    Baidu
  • [1]

    Wang B, Wu Y, Han F, Yang Y H, Liu K R 2011 IEEE J. Sel. Areas Commun. 29 1698Google Scholar

    [2]

    Han F, Yang Y H, Wang B, Wu Y, Liu K R 2012 IEEE Global Telecommunications Conference-GLOBECOM 2011 Houston, TX, USA, December 5–9, 2011 p1

    [3]

    Nguyen H T, Andersen J B, Pedersen G F, Kyritsi P, Eggers P C 2006 IEEE Trans. Wireless Commun. 5 2242Google Scholar

    [4]

    Zhao D, Zhu M 2006 IEEE Antennas Wirel. Propag. Lett. 15 1739Google Scholar

    [5]

    Bellizzi G G, Bevacqua M T, Crocco L, Isernia T 2018 IEEE Trans. Antennas Propag. 66 4380Google Scholar

    [6]

    Li B, Liu S, Zhang H L, Hu B J, Zhao D, Huang Y 2019 IEEE Access 7 114897Google Scholar

    [7]

    Bellizzi G G, Iero D A, Crocco L, Isernia T 2018 IEEE Antennas Wirel. Propag. Lett. 17 360Google Scholar

    [8]

    Iero D A, Crocco L, Isernia T 2013 IEEE Trans. Antennas Propag. 62 814Google Scholar

    [9]

    Lerosey G, De Rosny J, Tourin A, Derode A, Montaldo G, Fink M 2004 Phys. Rev. Lett. 92 193904Google Scholar

    [10]

    Carminati R, Pierrat R, De Rosny J, Fink M 2007 Opt. Lett. 32 3107Google Scholar

    [11]

    Hong S K, Lathrop E, Mendez V M, Kim J 2015 Prog. Electromagn. Res. 153 113Google Scholar

    [12]

    Hong S, Park H 2018 Electron. Lett. 54 768Google Scholar

    [13]

    Drikas Z B, Addissie B D, Mendez V M, Raman S 2020 IEEE Trans. Microwave Theory Tech. 68 3355Google Scholar

    [14]

    Li B, Zhang Q, Zhao D, Yang Y 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) Beijing, China, September 1–4, 2022 p356

    [15]

    Drikas Z B, Addissie B D, Mendez V M, Raman S 2021 IEEE Microwave Wireless Compon. Lett. 32 177Google Scholar

    [16]

    Wang K, Shao W, Ou H, Wang B Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 2828Google Scholar

    [17]

    Razzaghi R, Lugrin G, Manesh H, Romero C, Paolone M, Rachidi F 2013 IEEE Trans. Power Delivery 28 1663Google Scholar

    [18]

    Codino A, Wang Z, Razzaghi R, Paolone M, Rachidi F 2017 IEEE Trans. Electromagn. Compat. 59 1601Google Scholar

    [19]

    Sun J, Yang Q, Cui H, Ran J, Liu H 2021 IEEE Trans. Electromagn. Compat. 63 1921Google Scholar

    [20]

    Ding S, Fang Y, Zhu J F, Yang Y, Wang B Z 2019 IEEE Trans. Antennas Propag. 67 1386Google Scholar

    [21]

    Ibrahim R, Voyer D, Bréard A, Huillery J, Vollaire C, Allard B, Zaatar Y 2016 IEEE Trans. Microwave Theory Tech. 64 2159Google Scholar

    [22]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [23]

    Derode A, Tourin A, Fink M 1999 J. Appl. Phys. 85 6343Google Scholar

    [24]

    陆希成, 邱扬, 田锦, 汪海波, 江凌, 陈鑫 2022 71 024101Google Scholar

    Lu X C, Qiu Y, Tian J, Wang H B, Jiang L, Chen X 2022 Acta Phys. Sin. 71 024101Google Scholar

    [25]

    Cramer R M, Scholtz R A, Win M Z 2002 IEEE Trans. Antennas Propag. 50 561Google Scholar

    [26]

    Lerosey G, De Rosny J, Tourin A, Fink M 2007 Science 315 1120Google Scholar

计量
  • 文章访问数:  5116
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-06-12
  • 上网日期:  2023-06-26
  • 刊出日期:  2023-08-20

/

返回文章
返回
Baidu
map