搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析

王明军 席建霞 王婉柔 李勇俊 张佳琳

引用本文:
Citation:

声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析

王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳

Analysis of influence of acoustic wave disturbance on internal and external scale and refractive index power spectrum function of atmospheric turbulence

Wang Ming-Jun, Xi Jian-Xia, Wang Wan-Rou, Li Yong-Jun, Zhang Jia-Lin
cstr: 32037.14.aps.72.20230003
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 声波是一种机械波, 作为能量的载体, 在大气湍流环境下传输会“扰动”湍流耗散率的变化, 从而会影响湍流物理结构演化. 本文基于声波能量和湍流能量平衡方程, 结合湍流内外尺度和大气折射率功率谱函数, 研究了在不同声波扰动下大气湍流的内外尺度和折射率功率谱函数的变化特征. 结果表明: 不同声波的传播会使得湍流的内外尺度发生变化, 声源功率越大, 对湍流尺度的影响越大, 然而声源频率越大, 对湍流尺度的影响并不是特别明显; 不同声波的传播会使大气折射率功率谱函数发生改变, 在惯性区内, 考虑到声波对湍流内外尺度的影响, 不同声源对大气折射率功率谱的影响程度不同, 在耗散区内, 大气折射率功率谱都出现随声波传输距离波动的情况. 本文探索声波扰动对大气湍流折射率功率谱函数特征参数的变化规律, 为激光在声波扰动大气湍流中传输特性以及声光耦合研究提供理论依据.
    Sound wave is a kind of mechanical wave, and as the carrier of energy, its transmission in the atmospheric turbulence environment will “disturb” the change of turbulence dissipation rate, thus affecting the evolution of turbulence physical structure. Using the acoustic energy and turbulent energy balance equations and combining the inner and outer scales of turbulence and the atmospheric refractive index power spectral function, this work studies the variation characteristics of the inner and outer scales and refractive index power spectral functions of atmospheric turbulence under different acoustic disturbances. The results show that the propagation of different acoustic waves can cause the internal and external scales of turbulence to change. The greater the sound source power, the stronger the influence on the scale of turbulence is. However, the greater the sound source frequency, the less significant the influence on the scale of turbulence is. The propagation of different sound waves can change the atmospheric refractive index power spectrum function. In the inertial region, considering the effects of sound waves on the inner and outer scales of turbulence, the influences of different sound sources on the atmospheric refractive index power spectrum are different. In a dissipative region, the atmospheric refractive index power spectrum fluctuates with the transmission distance of sound wave. This work explores the acoustic-wave caused variation of the characteristic parameters of the refractive index power spectrum function of atmospheric turbulence, providing a theoretical basis for studying the laser propagation characteristics and acoustooptic coupling in atmospheric turbulence caused by acoustic waves.
      通信作者: 王明军, wangmingjun@xaut.edu.cn
    • 基金项目: 国家自然科学基金重大研究计划培育项目(批准号: 92052106)、国家自然科学基金(批准号: 61771385)、陕西省杰出青年科学基金(批准号: 2020JC-42)和固体激光技术重点实验室开放基金(批准号: 6142404190301)资助的课题.
      Corresponding author: Wang Ming-Jun, wangmingjun@xaut.edu.cn
    • Funds: Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant No. 61771385), the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2020JC-42), and the Science and Technology on Solid-State Laser Laboratory, China (Grant No. 6142404190301).
    [1]

    Tonning A 1957 Appl. Sci. Res. , Sect. B 6 401Google Scholar

    [2]

    Cooper D C, Blogh J 1969 Radio Electron. Engineer 38 315Google Scholar

    [3]

    Marshall J M, Peterson A M, Barnes A A 1972 Appl. Opt. 11 108Google Scholar

    [4]

    Lataitis R J 1992 Ph. D. Dissertation (Boulder: University of Colorado)

    [5]

    Weiss M, Knochel R 2002 International Microwave Symposium Digest Seattle, WA, USA, June 2–7, 2002 p1043

    [6]

    Weiss M, Knochel R 2001 IEEE T. Instrum. Meas. 50 1043Google Scholar

    [7]

    Gao Q 2018 M. S. Thesis (Xi’an: Xi’an University of Electronic Technology) (in Chinese) [高琦 2018 硕士学位论文 (西安: 西安电子科技大学)]

    [8]

    Gong S H, Liu Y, Hou M Y, Guo L X 2018 Computational and Experimental Studies of Acoustic Waves (New York: IntechOpen) p124

    [9]

    暴雅婷, 杨永赛, 弓树宏 2020 电波科学学报 35 868Google Scholar

    Bao Y T, Yang Y S, Gong S H 2020 Chin. J. Radio Sci. 35 868Google Scholar

    [10]

    王明军, 王婉柔, 李勇俊 2022 71 164302Google Scholar

    Wang M J, Wang W R, Li Y J 2022 Acta Phys. Sin. 71 164302Google Scholar

    [11]

    程建春 2012 声学原理 (北京: 科学出版社) 第32页

    Cheng J C 2012 Principles of Acoustic (Beijing: Science Press) p32 (in Chinese)

    [12]

    Gong S H, Yan D, Wang X 2015 Radio Sin. 50 983Google Scholar

    [13]

    马大猷 2004 现代声学理论基础 (北京: 科学出版社) 第15页

    Ma D Y 2004 Fundamentals of Modern Acoustics (Beijing: Science Press) p15 (in Chinese)

    [14]

    塔塔尔斯基 B N 1978 湍流大气中波的传播理论 (北京: 科学出版社) 第44页

    Tatarskii B N 1978 Wave Propagation Theory in Turbulent Atmosphere (Beijing: Science Press) p44 (in Chinese)

    [15]

    石丸 著 (黄润桓, 周诗健 译) 1986 随机介质中波的传播和散射 (北京: 科学出版社)

    Ishimaru A (translated by Huang R H, Zhou S J) 1986 Wave Propagation and Scattering in Random Media (Beijing: Science Press) (in Chinese)

    [16]

    吴健, 杨春平, 刘建斌 2005 大气中的光传输理论 (北京: 北京邮电大学出版社) 第129页

    Wu J, Yang C P, Liu J B 2005 Theory of Light Transmission in Atmosphere (Beijing: Beijing University of Posts and Telecommunications Press) p129 (in Chinese)

    [17]

    刘扬阳, 吕群波, 张文喜 2012 61 124201Google Scholar

    Liu Y Y, Lv Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201Google Scholar

    [18]

    李成强, 张合勇, 王挺峰, 刘立生, 郭劲 2013 62 224203Google Scholar

    Li C Q, Zhang H Y, Wang T F, Liu L S, Guo J 2013 Acta Phys. Sin. 62 224203Google Scholar

    [19]

    Andrews L C , Phillips R L 2005 Laser Beam Propagation Through Random Media (Bellingham: SPIE Press) p69

    [20]

    潘平平, 张彬 2011 60 014215Google Scholar

    Pan P P, Zhang B 2011 Acta Phys. Sin. 60 014215Google Scholar

  • 图 1  大气湍流中声波能量传输示意图

    Fig. 1.  Schematic diagram of acoustic energy transmission in atmospheric turbulence.

    图 2  不同类型声波传播示意图 (a)笛卡尔坐标系; (b)柱坐标系; (c)球坐标系

    Fig. 2.  Schematic diagram of different types of acoustic wave propagation: (a) Cartesian coordinate system; (b) column coordinate system; (c) spherical coordinate system.

    图 3  不同声源激发产生的声能分布 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 3.  Distribution of sound energy generated by excitation of different sound sources: (a) Plane sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 4  声源功率和湍流外尺度之间的关系 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 4.  Relationship between sound source power and turbulence outer scale: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 5  声源功率和湍流内尺度之间的关系 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 5.  Relationship between sound source power and turbulence internal scale: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 6  声源频率和湍流外尺度之间的关系 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 6.  Relationship between sound source frequency and turbulence outer scale: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 7  声源频率和湍流内尺度之间的关系 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 7.  Relationship between sound source frequency and turbulence internal scale: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 8  加入不同声波扰动时的Tatarskii谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 8.  Tatarskii spectrum with different acoustic disturbances: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 11  加入不同声波扰动时的修正Hill谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 11.  Modified Hill spectrum with different acoustic disturbances: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 9  加入不同声波扰动时的 Hill谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 9.  Hill spectrum with different acoustic disturbances: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 10  加入不同声波扰动时的Von Karman谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 10.  Von Karman spectrum with different acoustic disturbances: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 12  不同声源功率下的Tatarskii谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 12.  Tatarskii spectrum at different sound source power: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 13  不同声源功率下的Hill谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 13.  Hill spectrum at different sound source power: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 14  不同声源功率下的Von Karman谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 14.  Von Karman spectrum at different sound source power: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    图 15  不同声源功率下的修正Hill谱 (a)平面声源; (b)柱面声源; (c)球面声源

    Fig. 15.  Modified Hill spectrum at different sound source power: (a) Planar sound source; (b) cylindrical sound source; (c) spherical sound source.

    Baidu
  • [1]

    Tonning A 1957 Appl. Sci. Res. , Sect. B 6 401Google Scholar

    [2]

    Cooper D C, Blogh J 1969 Radio Electron. Engineer 38 315Google Scholar

    [3]

    Marshall J M, Peterson A M, Barnes A A 1972 Appl. Opt. 11 108Google Scholar

    [4]

    Lataitis R J 1992 Ph. D. Dissertation (Boulder: University of Colorado)

    [5]

    Weiss M, Knochel R 2002 International Microwave Symposium Digest Seattle, WA, USA, June 2–7, 2002 p1043

    [6]

    Weiss M, Knochel R 2001 IEEE T. Instrum. Meas. 50 1043Google Scholar

    [7]

    Gao Q 2018 M. S. Thesis (Xi’an: Xi’an University of Electronic Technology) (in Chinese) [高琦 2018 硕士学位论文 (西安: 西安电子科技大学)]

    [8]

    Gong S H, Liu Y, Hou M Y, Guo L X 2018 Computational and Experimental Studies of Acoustic Waves (New York: IntechOpen) p124

    [9]

    暴雅婷, 杨永赛, 弓树宏 2020 电波科学学报 35 868Google Scholar

    Bao Y T, Yang Y S, Gong S H 2020 Chin. J. Radio Sci. 35 868Google Scholar

    [10]

    王明军, 王婉柔, 李勇俊 2022 71 164302Google Scholar

    Wang M J, Wang W R, Li Y J 2022 Acta Phys. Sin. 71 164302Google Scholar

    [11]

    程建春 2012 声学原理 (北京: 科学出版社) 第32页

    Cheng J C 2012 Principles of Acoustic (Beijing: Science Press) p32 (in Chinese)

    [12]

    Gong S H, Yan D, Wang X 2015 Radio Sin. 50 983Google Scholar

    [13]

    马大猷 2004 现代声学理论基础 (北京: 科学出版社) 第15页

    Ma D Y 2004 Fundamentals of Modern Acoustics (Beijing: Science Press) p15 (in Chinese)

    [14]

    塔塔尔斯基 B N 1978 湍流大气中波的传播理论 (北京: 科学出版社) 第44页

    Tatarskii B N 1978 Wave Propagation Theory in Turbulent Atmosphere (Beijing: Science Press) p44 (in Chinese)

    [15]

    石丸 著 (黄润桓, 周诗健 译) 1986 随机介质中波的传播和散射 (北京: 科学出版社)

    Ishimaru A (translated by Huang R H, Zhou S J) 1986 Wave Propagation and Scattering in Random Media (Beijing: Science Press) (in Chinese)

    [16]

    吴健, 杨春平, 刘建斌 2005 大气中的光传输理论 (北京: 北京邮电大学出版社) 第129页

    Wu J, Yang C P, Liu J B 2005 Theory of Light Transmission in Atmosphere (Beijing: Beijing University of Posts and Telecommunications Press) p129 (in Chinese)

    [17]

    刘扬阳, 吕群波, 张文喜 2012 61 124201Google Scholar

    Liu Y Y, Lv Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201Google Scholar

    [18]

    李成强, 张合勇, 王挺峰, 刘立生, 郭劲 2013 62 224203Google Scholar

    Li C Q, Zhang H Y, Wang T F, Liu L S, Guo J 2013 Acta Phys. Sin. 62 224203Google Scholar

    [19]

    Andrews L C , Phillips R L 2005 Laser Beam Propagation Through Random Media (Bellingham: SPIE Press) p69

    [20]

    潘平平, 张彬 2011 60 014215Google Scholar

    Pan P P, Zhang B 2011 Acta Phys. Sin. 60 014215Google Scholar

计量
  • 文章访问数:  8811
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 修回日期:  2023-04-10
  • 上网日期:  2023-05-04
  • 刊出日期:  2023-06-20

/

返回文章
返回
Baidu
map