搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化

朱祥宁 冯黛丽 冯妍卉 林林 张欣欣

引用本文:
Citation:

木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化

朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣
cstr: 32037.14.aps.72.20222466

Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification

Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin
cstr: 32037.14.aps.72.20222466
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 以相变芯材为核心的复合相变材料的潜热储存技术, 对解决可再生能源间歇性问题有着关键作用. 本研究以天然竹木为原材料, 使用高温碳化方法得到碳化竹木, 并使其分别吸附氧化石墨烯和还原氧化石墨烯, 最终与聚乙二醇(PEG2000)复合形成稳定的复合相变材料. 实验结果表明, 还原氧化石墨烯可以达到很好的包封率、热导率和光热转换效率提升效果. 碳化竹木/还原氧化石墨烯/聚乙二醇三元复合相变材料包封率高达81.11%, 熔化潜热为115.62 J/g, 凝固潜热为104.39 J/g, 热导率大幅提升至1.09 W/(m·K)(纯PEG2000的3.7倍), 光热转换效率大幅提高至88.35% (纯PEG2000的3.1倍).
    Thermal energy storage technology can shift the peak and fill the valley of heat, which lays the foundation for realizing the goal of “emission peak and carbon neutrality”. Among various thermal energy storage techniques, the latent heat storage technology based on composite phase change materials can provide large storage capacity with a small temperature variation, and shows great potential in solving the intermittency issue of renewable energy. As a sustainable and renewable material, natural wood has the advantages of a unique anisotropic three-dimensional structure, perfect natural channel, low price, and rich resources. Therefore, the carbonized wood obtained from high-temperature carbonization of natural wood is an excellent choice as a supporting skeleton of composite phase change materials. On the other hand, polyethylene glycol is widely used in energy storage because of its suitable phase transition temperature (46–65℃), high latent heat (145–175 J/g), and stable performance. In this study, carbonized bamboo is prepared at high temperatures. To improve heat storage, thermal conductivity, and photo-thermal conversion properties, the carbonized bamboo is functionalized by graphene oxide and reduced graphene oxide, respectively. Finally, polyethylene glycol is implanted into modified carbonized bamboo to form shape-stabilized phase change materials. Their microstructures, morphologies, and thermophysical properties are characterized. The experimental results show that graphene oxide and reduced graphene oxide can change the surface polarity of carbonized bamboo, thus reducing the interfacial thermal resistance between the carbonized bamboo skeleton and polyethylene glycol, and improving the encapsulation ratio, thermal conductivity, and photo-thermal conversion efficiency without affecting the crystallization behavior of polyethylene glycol. The encapsulation ratio of carbonized bamboo/reduced graphene oxide/polyethylene glycol ternary phase change material is as high as 81.11% (only 4.67% lower than the theoretical value), its latent heat of melting and solidification are 115.62 J/g and 104.39 J/g, its thermal conductivity is greatly increased to 1.09 W/(m·K) (3.7 times that of pure polyethylene glycol), accompanied by substantial growth in its photo-thermal conversion efficiency, reaching 88.35% (3.1 times that of pure polyethylene glycol). This research develops a biomass-derived porous composite phase change material with high heat storage density, high heat transfer rate, and high photo-thermal conversion ability.
      通信作者: 冯黛丽, dlfeng@ustb.edu.cn ; 冯妍卉, yhfeng@me.ustb.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52176054, 52236006)资助的课题.
      Corresponding author: Feng Dai-Li, dlfeng@ustb.edu.cn ; Feng Yan-Hui, yhfeng@me.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52176054, 52236006).
    [1]

    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, ChenY, Sprenkle V L, Li X 2016 Adv. Mater. 28 1600377

    [2]

    Qian T T, Li J 2018 Energy 142 234Google Scholar

    [3]

    Zhang S, Wu W, Wang S 2017 Energy 130 228Google Scholar

    [4]

    Wang C, Feng L, Li W, Zheng J, Tian W, Li X 2012 Sol. Energy Mater. Sol. Cells 105 21Google Scholar

    [5]

    Yang H, Wang Y, Yu Q, Cao G, Yang R, Ke J, Di X, Liu, F, Zhang W, Wang C 2018 Appl. Energy 212 455Google Scholar

    [6]

    Huang X, Alva G, Liu L, Fang G 2017 Appl. Energy 200 19Google Scholar

    [7]

    Min X, Fang M H, Huang Z H, Liu Y G, Huang Y T, Wen R L, Qian T T, Wu X W 2015 Sci. Rep. 5 12964Google Scholar

    [8]

    Feng L L, Zheng J, Yang H Z, Yan L 2011 Sol. Energy Mater. Sol. Cells 95 644Google Scholar

    [9]

    Qian T T, Li J, Deng Y 2016 Sci. Rep. 6 32392Google Scholar

    [10]

    Karaman S, Karaipekli A, Sar A, Bier A 2011 Sol. Energy Mater. Sol. Cells 95 1647Google Scholar

    [11]

    Qi G Q, Liang C L, Bao R Y, Liu Z Y, Yang W, Xie B H, Yang M B 2014 Sol. Energy Mater. Sol. Cells 123 171Google Scholar

    [12]

    Qian T T, Li J, Min X, Deng Y, Guan W, Ma H 2015 Energy 82 333Google Scholar

    [13]

    Seki, Y, Ince, Seyma, Ezan M A, Turgut A, Erek A 2015 Sol. Energy Mater. Sol. Cells 140 457Google Scholar

    [14]

    Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C 2013 Chem. Eng. J. 231 214Google Scholar

    [15]

    Li B, Liu T, Hu L, Wang Y, Nie S 2013 Chem. Eng. J. 215 819

    [16]

    Zhao Y J, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2018 Energy Build. 158 1049Google Scholar

    [17]

    Zhang X G, Huang Z H, Yin Z Y, Zhang W Y, Huang Y T, Liu Y G, Fang M H, Wu X W, Min X 2017 Energy Build. 154 46Google Scholar

    [18]

    Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K 2014 J. Mater. Chem. A 2 7759Google Scholar

    [19]

    Zhang Y, Song J W, Kierzewski, Iain, Li Y J, Gong Y H 2017 Energy Environ. Sci. 10 538Google Scholar

    [20]

    Zhang Z T, Cao B Y 2022 Sci. China. Phys. Mech. 65 117003Google Scholar

    [21]

    Qiang S, Jing O, Yi Z, Yang H 2017 Appl. Clay Sci. 146 14Google Scholar

    [22]

    Zhang Y, Liu J, Su Z, Lu M, Liu S, Jiang T 2020 Constr. Build. Mater. 238 117717Google Scholar

    [23]

    Zou T, Fu W W, Liang X L, Wang S F, Gao X N, Zhang Z G, Fang Y T, Henrik L, Mark J K 2020 Energy 190 116473Google Scholar

    [24]

    Xie N, Li Z, Gao X, Fang Y, Zhang Z 2020 Int. J. Refrig. 110 178Google Scholar

    [25]

    Yang J, Jia Y L, Bing N C, Wang L L, Xie H Q, Yu W 2019 Appl. Therm. Eng. 163 114412Google Scholar

    [26]

    Zhang H, Wang L, Xi S, Xie H, Yu W 2021 Renew. Energy 175 307Google Scholar

    [27]

    Liu Y, Yang Y, Li S 2016 J. Mater. Chem. A 10 1039

    [28]

    Li Z, Yang W, Jiang Z, He F, Wu J 2017 Appl. Energy 197 354Google Scholar

    [29]

    Ma X C, Liu Y J, Liu H, Zhang L, Xu B, Xiao F 2018 Sol. Energy Mater. Sol. Cells 188 73Google Scholar

    [30]

    Feng D L, Zang Y Y, Li P, Feng Y H, Yan Y Y, Zhang X X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [31]

    Yu Z P, Feng D L, Feng Y H, Zhang X X 2022 Compos. Part A: Appl. Sci. Manufact. 152 106703Google Scholar

    [32]

    Yuan P, Zhang P, Liang T, Zhai S P 2019 Appl. Surf. Sci. 485 402Google Scholar

    [33]

    Xie B, Li C, Zhang B, Yang L, Chen J 2020 Energy Built Environ. 1 187

    [34]

    Hekimolu G, Sar A, Kar T, Kele S, Saleh T A 2021 J. Energy Storage 35 102288Google Scholar

    [35]

    Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J 2021 Sci. Rep. 11 822Google Scholar

    [36]

    Zhao Y J, Sun B, Du P P, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2019 Mater. Res. Express 6 115515Google Scholar

    [37]

    Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J 2018 Int. J. Mol. Sci. 19 3055Google Scholar

    [38]

    Wan Y C, Chen Y, Cui Z X, Ding H, Gao S F, Han Z, Gao J K 2019 Sci. Rep. 9 11535Google Scholar

    [39]

    Das D, Bordoloi U, Muigai H H, Kalita P 2020 J. Energy Storage 30 101403Google Scholar

    [40]

    Yang H Y, Wang Y, Yu Q, Li G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J 2018 Energy 159 929Google Scholar

    [41]

    Li C, Xie B, He Z, Chen J, Long Y 2019 Renew. Energy 140 862Google Scholar

    [42]

    Zhang W, Zhang X, Zhang X, Yin Z, Liu Y, Fang M, Wu X, Min X, Huang Z 2019 Thermochim. Acta 674 21Google Scholar

    [43]

    Atinafu D G, Dong W, Wang C, Wang G 2018 J. Mater. Chem. A 6 8969Google Scholar

    [44]

    Wen R, Zhang W, Lv Z, Huang Z, Gao W 2018 Mater. Lett. 215 42Google Scholar

    [45]

    Yang Z, Deng Y, Li J 2019 Appl. Therm. Eng. 150 967Google Scholar

  • 图 1   (a) 天然竹木的碳化过程; (b) 碳化竹木吸附氧化石墨烯和还原氧化石墨烯的过程; (c) 碳化骨架和PEG2000复合过程

    Fig. 1.  (a) The carbonization process of natural bamboo wood; (b) the adsorption process of GO and RGO by carbonized wood; (c) the composite process of carbon skeleton and PEG2000.

    图 2  几种材料的横截面SEM图像

    Fig. 2.  SEM images of cross-section.

    图 3  (a) NBW和CBW的孔径分布; (b) CBW的拉曼图谱

    Fig. 3.  (a) Pore size distribution of NBW and CBW; (b) Raman spectra of CBW.

    图 4  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW 和 PEG2000的FT-IR光谱(a)和XRD图谱(b)

    Fig. 4.  (a) FT-IR spectroscopy and (b) XRD patterns of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000.

    图 5  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的TG曲线(a)和DSC曲线(b)

    Fig. 5.  TG curves (a) and DSC curves (b) of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW.

    图 6  (a) NBW, CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的热导率; (b) 生物质复合相变材料的包封率和热导率比较

    Fig. 6.  (a) Thermal conductivities of NBW, CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000; (b) comparison of encapsulation ratio and thermal conductivity of biomass composite phase change materials.

    图 7  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW和PEG-RGOCBW的应力-应变曲线

    Fig. 7.  Stress-strain curves of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, and PEG-RGOCBW.

    图 8  PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的温升曲线(a), 光转换效率(b)和红外热成像图片(c)

    Fig. 8.  Temperature rise curve (a), photothermal conversion efficiency (b), and infrared thermal images (c) of PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000.

    表 1  NBW和CBW的孔隙参数

    Table 1.  Pore parameters of NBW and CBW.

    样品孔隙率/%平均孔径/nm总孔容/
    (cm3·g–1)
    总孔面积/
    (m2·g–1)
    NBW39.2422.170.4988.91
    CBW79.9546.955.34454.59
    下载: 导出CSV

    表 2  PEG-CBW, PEG-GOCBW, PEG-RGOCBW的相变参数

    Table 2.  Phase change parameters of PEG-CBW, PEG-GOCBW, PEG-RGOCBW.

    样品Tm/TfΔHm/ΔHf$ \gamma $/%
    PEG200052.47/30.86193.00/176.60
    PEG-CBW46.86/36.7644.56/37.1352.66
    PEG-GOCBW50.14/35.0079.49/67.6471.53
    PEG-RGOCBW50.06/37.15115.62/104.3981.11
    下载: 导出CSV
    Baidu
  • [1]

    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, ChenY, Sprenkle V L, Li X 2016 Adv. Mater. 28 1600377

    [2]

    Qian T T, Li J 2018 Energy 142 234Google Scholar

    [3]

    Zhang S, Wu W, Wang S 2017 Energy 130 228Google Scholar

    [4]

    Wang C, Feng L, Li W, Zheng J, Tian W, Li X 2012 Sol. Energy Mater. Sol. Cells 105 21Google Scholar

    [5]

    Yang H, Wang Y, Yu Q, Cao G, Yang R, Ke J, Di X, Liu, F, Zhang W, Wang C 2018 Appl. Energy 212 455Google Scholar

    [6]

    Huang X, Alva G, Liu L, Fang G 2017 Appl. Energy 200 19Google Scholar

    [7]

    Min X, Fang M H, Huang Z H, Liu Y G, Huang Y T, Wen R L, Qian T T, Wu X W 2015 Sci. Rep. 5 12964Google Scholar

    [8]

    Feng L L, Zheng J, Yang H Z, Yan L 2011 Sol. Energy Mater. Sol. Cells 95 644Google Scholar

    [9]

    Qian T T, Li J, Deng Y 2016 Sci. Rep. 6 32392Google Scholar

    [10]

    Karaman S, Karaipekli A, Sar A, Bier A 2011 Sol. Energy Mater. Sol. Cells 95 1647Google Scholar

    [11]

    Qi G Q, Liang C L, Bao R Y, Liu Z Y, Yang W, Xie B H, Yang M B 2014 Sol. Energy Mater. Sol. Cells 123 171Google Scholar

    [12]

    Qian T T, Li J, Min X, Deng Y, Guan W, Ma H 2015 Energy 82 333Google Scholar

    [13]

    Seki, Y, Ince, Seyma, Ezan M A, Turgut A, Erek A 2015 Sol. Energy Mater. Sol. Cells 140 457Google Scholar

    [14]

    Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C 2013 Chem. Eng. J. 231 214Google Scholar

    [15]

    Li B, Liu T, Hu L, Wang Y, Nie S 2013 Chem. Eng. J. 215 819

    [16]

    Zhao Y J, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2018 Energy Build. 158 1049Google Scholar

    [17]

    Zhang X G, Huang Z H, Yin Z Y, Zhang W Y, Huang Y T, Liu Y G, Fang M H, Wu X W, Min X 2017 Energy Build. 154 46Google Scholar

    [18]

    Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K 2014 J. Mater. Chem. A 2 7759Google Scholar

    [19]

    Zhang Y, Song J W, Kierzewski, Iain, Li Y J, Gong Y H 2017 Energy Environ. Sci. 10 538Google Scholar

    [20]

    Zhang Z T, Cao B Y 2022 Sci. China. Phys. Mech. 65 117003Google Scholar

    [21]

    Qiang S, Jing O, Yi Z, Yang H 2017 Appl. Clay Sci. 146 14Google Scholar

    [22]

    Zhang Y, Liu J, Su Z, Lu M, Liu S, Jiang T 2020 Constr. Build. Mater. 238 117717Google Scholar

    [23]

    Zou T, Fu W W, Liang X L, Wang S F, Gao X N, Zhang Z G, Fang Y T, Henrik L, Mark J K 2020 Energy 190 116473Google Scholar

    [24]

    Xie N, Li Z, Gao X, Fang Y, Zhang Z 2020 Int. J. Refrig. 110 178Google Scholar

    [25]

    Yang J, Jia Y L, Bing N C, Wang L L, Xie H Q, Yu W 2019 Appl. Therm. Eng. 163 114412Google Scholar

    [26]

    Zhang H, Wang L, Xi S, Xie H, Yu W 2021 Renew. Energy 175 307Google Scholar

    [27]

    Liu Y, Yang Y, Li S 2016 J. Mater. Chem. A 10 1039

    [28]

    Li Z, Yang W, Jiang Z, He F, Wu J 2017 Appl. Energy 197 354Google Scholar

    [29]

    Ma X C, Liu Y J, Liu H, Zhang L, Xu B, Xiao F 2018 Sol. Energy Mater. Sol. Cells 188 73Google Scholar

    [30]

    Feng D L, Zang Y Y, Li P, Feng Y H, Yan Y Y, Zhang X X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [31]

    Yu Z P, Feng D L, Feng Y H, Zhang X X 2022 Compos. Part A: Appl. Sci. Manufact. 152 106703Google Scholar

    [32]

    Yuan P, Zhang P, Liang T, Zhai S P 2019 Appl. Surf. Sci. 485 402Google Scholar

    [33]

    Xie B, Li C, Zhang B, Yang L, Chen J 2020 Energy Built Environ. 1 187

    [34]

    Hekimolu G, Sar A, Kar T, Kele S, Saleh T A 2021 J. Energy Storage 35 102288Google Scholar

    [35]

    Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J 2021 Sci. Rep. 11 822Google Scholar

    [36]

    Zhao Y J, Sun B, Du P P, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2019 Mater. Res. Express 6 115515Google Scholar

    [37]

    Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J 2018 Int. J. Mol. Sci. 19 3055Google Scholar

    [38]

    Wan Y C, Chen Y, Cui Z X, Ding H, Gao S F, Han Z, Gao J K 2019 Sci. Rep. 9 11535Google Scholar

    [39]

    Das D, Bordoloi U, Muigai H H, Kalita P 2020 J. Energy Storage 30 101403Google Scholar

    [40]

    Yang H Y, Wang Y, Yu Q, Li G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J 2018 Energy 159 929Google Scholar

    [41]

    Li C, Xie B, He Z, Chen J, Long Y 2019 Renew. Energy 140 862Google Scholar

    [42]

    Zhang W, Zhang X, Zhang X, Yin Z, Liu Y, Fang M, Wu X, Min X, Huang Z 2019 Thermochim. Acta 674 21Google Scholar

    [43]

    Atinafu D G, Dong W, Wang C, Wang G 2018 J. Mater. Chem. A 6 8969Google Scholar

    [44]

    Wen R, Zhang W, Lv Z, Huang Z, Gao W 2018 Mater. Lett. 215 42Google Scholar

    [45]

    Yang Z, Deng Y, Li J 2019 Appl. Therm. Eng. 150 967Google Scholar

计量
  • 文章访问数:  8684
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 修回日期:  2023-02-02
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回
Baidu
map