搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双轴错配应变对铁电双栅负电容晶体管性能的影响

纪婷伟 白刚

引用本文:
Citation:

双轴错配应变对铁电双栅负电容晶体管性能的影响

纪婷伟, 白刚
cstr: 32037.14.aps.72.20222190

Effect of biaxial misfit strain on properties of ferroelectric double gate negative capacitance transistors

Ji Ting-Wei, Bai Gang
cstr: 32037.14.aps.72.20222190
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 提出了双轴错配应变调节的对称双栅负电容场效应晶体管的电学特性的解析模型, 然后基于该模型对比研究了铁电层厚度和双轴错配应变分别对基于PbZr0.5Ti0.5O3和CuInP2S6材料的两种负电容场效应晶体管的电学性能的影响. 结果表明: 对于基于PbZr0.5Ti0.5O3的负电容场效应晶体管, 当增加其铁电层厚度或施加压缩应变时, 其亚阈值摆幅和导通电流得到改善, 但施加拉伸应变具有相反的作用. 对于基于CuInP2S6的负电容场效应晶体管, 在增加铁电层厚度或施加拉伸应变时性能有所改善, 但器件在压缩应变下是滞后的. 比较两者发现, 在低栅极电压下, 基于CuInP2S6的负电容场效应晶体管比基于PbZr0.5Ti0.5O3的负电容场效应晶体管表现出更好的性能.
    In order to continue Moore’s law, the reduction of power consumption has received much attention. It is necessary to develop steep devices that can overcome the “Boltzmann tyranny” and solve the problem of high power consumption of integrated circuits. Negative capacitance field-effect transistors are one of the most promising candidates in numerous steep devices. Strain engineering has been widely studied as an effective means of regulating the properties of ferroelectric thin films. However, the influence of strain on the performance of negative capacitance field-effect transistor has not been clear so far. Therefore, in this work, an analytical model of double gate negative capacitance field-effect transistor (DG-NCFET) regulated by biaxial misfit strain is proposed. Using this model, we investigate the influences of ferroelectric layer thickness and biaxial misfit strain on electrical properties of PbZr0.5Ti0.5O3 (PZT)-based and CuInP2S6 (CIPS)-based negative capacitance field-effect transistors (NCFETs), respectively. The results show that for the negative capacitance field-effect transistor based on PbZr0.5Ti0.5O3, when the ferroelectric layer thickness is increased or the compression strain is applied, the subthreshold swing and conduction current are improved, but the tensile strain has the opposite effect. For the negative capacitance field-effect transistor based on CuInP2S6, its performance is improved when the thickness of the ferroelectric layer is increased or the tensile strain is applied, but the device lags behind under the compressive strain. It is found that the CIPS-based NCFET exhibits better performance than PZT-based NCFET at low gate voltages.
      通信作者: 白刚, baigang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51602159)和南京邮电大学校级自然科学基金(批准号: NY222128)资助的课题.
      Corresponding author: Bai Gang, baigang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51602159) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY222128).
    [1]

    Danowitz A, Kelley K, Mao J, Stevenson J P, Horowitz M 2012 Commun. ACM 55 55Google Scholar

    [2]

    Sakurai T 2004 IEICE Trans. Electron. 87 429Google Scholar

    [3]

    Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar

    [4]

    Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar

    [5]

    Bacharach J, Ullah M S, Fouad E 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) Dallas, TX, USA, August 4–7, 2019 p180

    [6]

    Sakib F I, Mullick F E, Shahnewaz S, Islam S, Hossain M 2020 Semicond. Sci. Technol. 35 025005Google Scholar

    [7]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [8]

    Lee H, Yoon Y, Shin C 2017 IEEE Electron Device Lett. 38 669Google Scholar

    [9]

    Peng Y, Han G, Chen Z, Li Q, Zhang J, Hao Y 2018 IEEE J. Electron Device Soc. 6 233Google Scholar

    [10]

    Jiang C, Liang R, Wang J, Xu J 2015 J. Phys. D:Appl. Phys. 48 365103Google Scholar

    [11]

    Gaidhane A D, Pahwa G, Verma A, Chauhan Y S 2018 4th IEEE International Conference on Emerging Electronics (ICEE) Bengaluru, India, December 17–19, 2018 p1

    [12]

    Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar

    [13]

    Zhang S R, Zhu M X, Suriyaprakash J, Liu J M, Du T, Wang Y J, Long C B, Liao M 2022 J. Phys. Chem. C 126 4630Google Scholar

    [14]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B 2004 Nature 430 758Google Scholar

    [15]

    Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [16]

    Sun F, Chen D, Gao X, Liu J M 2021 J. Materiomics 7 281Google Scholar

    [17]

    Pertsev N A, Kukhar V G, Kohlstedt H, Waser R 2003 Phys. Rev. B 67 054107Google Scholar

    [18]

    林翠, 白刚, 李卫, 高存法 2021 70 187701Google Scholar

    Lin C, Bai G, Li W, Gao C F 2021 Acta Phys. Sin. 70 187701Google Scholar

    [19]

    Kim M, Seo J, Shin M 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Austin, TX, USA, September 24–26, 2018 p318

    [20]

    Liu F C, You L, Seyler K L, Li X B, Yu P, Lin J H, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharam P, Xu X D, Ajayan P M, Wang J L, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [21]

    Morozovska A N, Eliseev E A, Kalinin S V, Vysochanskii Y M, Maksymovych P 2021 Phys. Rev. B 104 054102Google Scholar

    [22]

    Wu M, Jena P 2018 Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 e1365Google Scholar

    [23]

    Synopsys 2010 Sentaurus Device User Guide (Mountain View, CA)

    [24]

    Landau L, Khalatnikov I 1954 Dokl. Akad. Nauk 96 469Google Scholar

    [25]

    Rabe K M, Dawber M, Lichtensteiger C, Ahn C H, Triscone J M (Rabe K M, et al. Ed. ) 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer) pp1–30

    [26]

    Pao H C, Sah C T 1966 Solid State Electron. 9 927Google Scholar

    [27]

    Hoffmann M, Fengler F P G, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Pintilie L, Slesazeck S, Mikolajick T 2019 Nature 565 464Google Scholar

    [28]

    Neumayer S M, Eliseev E A, Susner M A, Tselev A, Rodriguez B J, Brehm J A, Pantelides S T, Panchapakesan G, Jesse S, Kalinin S V, McGuire M A, Morozovska A N, Maksymovych P, Balke N 2019 Phys. Rev. Mater. 3 024401Google Scholar

  • 图 1  (a) DG-NCFET示意图; (b) 简化的小信号电容模型

    Fig. 1.  (a) Schematic of DG-NCFETs; (b) simplified small-signal capacitance model.

    图 2  (a) PZT和(b) CIPS的自由能U作为不同应变下电极化P的函数的双阱图

    Fig. 2.  Double-well landscape of the free energy U for (a) PZT and (b) CIPS, respectively, as a function of the electric polarization P under different strains.

    图 3  (a) PZT和(b) CIPS FE层在不同应变下电压Vfe和极化P之间的关系; (c) PZT和CIPS之间P-Vfe曲线的比较

    Fig. 3.  Relationship between the voltage Vfe and the polarization P under different strains for (a) PZT and (b) CIPS FE layers, respectively; (c) comparation on P-Vfe curves between PZT and CIPS.

    图 4  不同FE层厚度和双轴应变对(a) PZT基NCFETs和(b) CIPS基NCFETs表面电势的影响

    Fig. 4.  Effects of the FE layer thickness and biaxial strain on the surface potential for (a) PZT based NCFETs and (b) CIPS based NCFETs, respectively.

    图 5  在不同FE膜厚度和双轴错配应变下, PZT基NCFET和CIPS基NCFETs的Vgs-Vfe 曲线

    Fig. 5.  Vgs-Vfe curves for PZT based NCFETs and CIPS based NCFETs under different FE film thicknesses and biaxial misfit strains.

    图 6  FE层厚度和双轴应变分别对(a) PZT基NCFETs和(b) CIPS基NCFETs的电压增益G的影响

    Fig. 6.  Effects of the FE layer thickness and biaxial strain on the voltage gain G for (a) PZT based NCFETs and (b) CIPS based NCFETs, respectively.

    图 7  FE层厚度和应变对(a) PZT基NCFETs和(b) CIPS基NCFETs传输特性图的影响

    Fig. 7.  Effects of the FE layer thickness and strain on the transfer characteristic graph for (a) PZT based NCFETs and (b) CIPS based NCFETs, respectively.

    图 8  (a) PZT基NCFETs和(b) CIPS基NCFETs的FE层厚度和双轴错配应变对沟道中心电子密度n0的影响

    Fig. 8.  Effects of the FE layer thickness and biaxial misfit strain on electron density n0 at the center of the channel for (a) PZT based NCFETs and (b) CIPS based NCFETs, respectively.

    图 9  (a) 基于PZT的NCFETs和(b) 基于CIPS的NCFETs的FE层厚度和应变对SS的影响

    Fig. 9.  Effects of the FE layer thickness and strain on SS for (a) PZT based NCFETs and (b) CIPS based NCFETs, respectively.

    图 10  (a) Vgs = 0.6 V和(c) Vgs = 0.8 V时FE层厚度和应变对PZT基NCFET输出特性的影响; (b) Vgs = 0.6 V和(d) Vgs = 0.8 V时FE层厚度和应变对CIPS基的NCFET输出特性的影响

    Fig. 10.  Effects of the FE layer thickness and strain on output characteristics for PZT based NCFETs at (a) Vgs = 0.6 V and (c) Vgs = 0.8 V; for CIPS based NCFETS at (b) Vgs = 0.6 V and (d) Vgs = 0.8 V.

    表 1  PbZr0.2Ti0.8O3[18]和CuInP2S6[21]材料的相关系数(温度T的单位为 K)

    Table 1.  Paramaters for bulk ferroelectric PbZr0.2Ti0.8O3 and CuInP2S6 [18,21].

    CoefficientValue
    PZTa1/(C–2·m2·N)1.33(T – 665.7)×105
    a11/(C–4·m6·N)4.764×107
    a111/(C–4·m6·N)1.336×108
    s11/(C–6·m10·N)10.5×10–12
    s12/(C–6·m10·N)–3.7×10–12
    Q12/(m4·C–2)–0.0460
    CIPS$ {\alpha }_{T}/$(C–2·mJ·K–1)1.64067×107
    T0/K292.67
    α/(C–4·m5·J)3.148×1012
    γ/(C–6·m9·J)–1.0776×1016
    δ/(C–8·m13·J)7.6318×1018
    Q13/(C–2·m4)1.70136 – 0.00363T
    Q23/(C–2·m4)1.13424 – 0.00242T
    Q33/(C–2·m4)–5.622 + 0.0105T
    Z133/(C–2·m4)–2059.65 + 0.8T
    Z233/(C–2·m4)–1211.26 + 0.45T
    s11/Pa–11.510×10–11
    s12/Pa–10.183×10–11
    结构参数Lg/nm1000
    W/nm1000
    下载: 导出CSV
    Baidu
  • [1]

    Danowitz A, Kelley K, Mao J, Stevenson J P, Horowitz M 2012 Commun. ACM 55 55Google Scholar

    [2]

    Sakurai T 2004 IEICE Trans. Electron. 87 429Google Scholar

    [3]

    Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar

    [4]

    Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar

    [5]

    Bacharach J, Ullah M S, Fouad E 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) Dallas, TX, USA, August 4–7, 2019 p180

    [6]

    Sakib F I, Mullick F E, Shahnewaz S, Islam S, Hossain M 2020 Semicond. Sci. Technol. 35 025005Google Scholar

    [7]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [8]

    Lee H, Yoon Y, Shin C 2017 IEEE Electron Device Lett. 38 669Google Scholar

    [9]

    Peng Y, Han G, Chen Z, Li Q, Zhang J, Hao Y 2018 IEEE J. Electron Device Soc. 6 233Google Scholar

    [10]

    Jiang C, Liang R, Wang J, Xu J 2015 J. Phys. D:Appl. Phys. 48 365103Google Scholar

    [11]

    Gaidhane A D, Pahwa G, Verma A, Chauhan Y S 2018 4th IEEE International Conference on Emerging Electronics (ICEE) Bengaluru, India, December 17–19, 2018 p1

    [12]

    Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar

    [13]

    Zhang S R, Zhu M X, Suriyaprakash J, Liu J M, Du T, Wang Y J, Long C B, Liao M 2022 J. Phys. Chem. C 126 4630Google Scholar

    [14]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B 2004 Nature 430 758Google Scholar

    [15]

    Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K, Triscone J M 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [16]

    Sun F, Chen D, Gao X, Liu J M 2021 J. Materiomics 7 281Google Scholar

    [17]

    Pertsev N A, Kukhar V G, Kohlstedt H, Waser R 2003 Phys. Rev. B 67 054107Google Scholar

    [18]

    林翠, 白刚, 李卫, 高存法 2021 70 187701Google Scholar

    Lin C, Bai G, Li W, Gao C F 2021 Acta Phys. Sin. 70 187701Google Scholar

    [19]

    Kim M, Seo J, Shin M 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) Austin, TX, USA, September 24–26, 2018 p318

    [20]

    Liu F C, You L, Seyler K L, Li X B, Yu P, Lin J H, Wang X W, Zhou J D, Wang H, He H Y, Pantelides S T, Zhou W, Sharam P, Xu X D, Ajayan P M, Wang J L, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [21]

    Morozovska A N, Eliseev E A, Kalinin S V, Vysochanskii Y M, Maksymovych P 2021 Phys. Rev. B 104 054102Google Scholar

    [22]

    Wu M, Jena P 2018 Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 e1365Google Scholar

    [23]

    Synopsys 2010 Sentaurus Device User Guide (Mountain View, CA)

    [24]

    Landau L, Khalatnikov I 1954 Dokl. Akad. Nauk 96 469Google Scholar

    [25]

    Rabe K M, Dawber M, Lichtensteiger C, Ahn C H, Triscone J M (Rabe K M, et al. Ed. ) 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer) pp1–30

    [26]

    Pao H C, Sah C T 1966 Solid State Electron. 9 927Google Scholar

    [27]

    Hoffmann M, Fengler F P G, Herzig M, Mittmann T, Max B, Schroeder U, Negrea R, Pintilie L, Slesazeck S, Mikolajick T 2019 Nature 565 464Google Scholar

    [28]

    Neumayer S M, Eliseev E A, Susner M A, Tselev A, Rodriguez B J, Brehm J A, Pantelides S T, Panchapakesan G, Jesse S, Kalinin S V, McGuire M A, Morozovska A N, Maksymovych P, Balke N 2019 Phys. Rev. Mater. 3 024401Google Scholar

计量
  • 文章访问数:  6287
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2022-12-20
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map