搜索

x
中国物理学会期刊

联合简正波水波和底波频散特性的贝叶斯地声参数反演

CSTR: 32037.14.aps.72.20221717

Bayesian geoacoustic parameter inversion based on dispersion characteristics of normal mode water wave and ground wave

CSTR: 32037.14.aps.72.20221717
PDF
HTML
导出引用
  • 大多数基于浅海简正波模态频散数据的地声参数反演方法无法对深层底质声学参数进行可靠估计, 究其原因是仅利用了简正波水波频散特征, 忽略了与深层底质声学参数密切相关的底波频散特征, 因此, 本文在分析了包含水波和底波的浅海宽带数据的基础上, 结合底波频散特征对深层底质声学参数变化更加敏感的物理特性, 实现了基于完整简正波频散特性的贝叶斯地声参数反演, 并针对简正波宽带声场模型计算复杂度较高的现实问题, 利用变分贝叶斯蒙特卡罗方法的推断优势, 完成了未知参数的可靠估计和快速后验分析. 仿真和海上实验结果表明: 联合简正波水波和底波频散特征数据的贝叶斯地声参数反演, 不仅可以有效估计深层底质声学参数, 而且降低了其他相关环境参数的估计不确定性.

     

    Most of shallow water geoacoustic inversions based on modal dispersion cannot reliably estimate the deep geoacoustic parameters. Because these studies focused on the dispersions of water waves but ignored the dispersions of ground waves. Therefore, in this paper a Bayesian geoacoustic inversion is studied based on wideband modal dispersions of water waves and ground waves. Firstly, the modal dispersion curves with Airy phase components are discussed. Secondly, the Bayesian inversion theory and a novel sample-efficient inference algorithm, namely Variational Bayesian Monte Carlo, are introduced briefly. In the Bayesian inversion, the posterior probability densities of unknown parameters are inferred, which can provide the prediction closest to the observation data and the uncertainty of the prediction. Considering that the forward acoustic model is computationally intensive, the posterior analysis is carried out by using the Variational Bayesian Monte Carlo method. It is performed by finding the variational distribution closest to the target distribution and requires less computation time than the Markov chain Monto Carlo method. In the simulation study, a range-independent two-layer seabed, including the sediment layer and basement layer, is modeled, on the assumption that the water column is homogeneous. The function of shear wave in waveguide is ignored. The compressional sound speed of the sediment layer varies linearly from c1U to c1L between 0 and h1, while other geoacoustic parameters are constant. By comparing the inversion results with and without the information of ground waves for different signal-to-noise ratios, it can be concluded that the deep geoacoustic parameters are more sensitive to the dispersions of ground waves. And then, a shallow-water experimental study is carried out in the Bohai Sea of China. The average water depth is about 20 m. The wideband pulse signals are recorded by a hydrophone with a sensitivity of –170 dB re 1 V/μPa. The received signals include well-defined Airy phase components, and the modal dispersion curves of water waves and ground waves are extracted accurately. The experimental results indicate that the Bayesian inversion combining water and ground wave dispersions can not only estimate the deep geoacoustic parameters reliably, but also reduce the inversion uncertainties of other model parameters, such as the shallow geoacoustic parameters, water depth, etc. The estimated source-receiver range and water sound speed are close to their measured values. The modal dispersion curves predicted by the posterior mean samples are in good consistence with those extracted from the experimental data in different ranges. In addition, the good forecast of transmission loss also demonstrates the reliability of the joint inversion.

     

    目录

    /

    返回文章
    返回
    Baidu
    map