搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳态微聚束加速器光源

唐传祥 邓秀杰

引用本文:
Citation:

稳态微聚束加速器光源

唐传祥, 邓秀杰

Steady-state micro-bunching accelerator light source

Tang Chuan-Xiang, Deng Xiu-Jie
cstr: 32037.14.aps.71.20220486
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 稳态微聚束(steady-state micro-bunching, SSMB)原理采用激光操控储存环中的电子, 可形成具有精微纵向/时间结构的电子束团, 即微聚束. 通过有机结合微聚束辐射的强相干特性以及储存环内电子束的高回旋频率特性, SSMB光源可提供高平均功率、窄带宽的相干辐射, 波段可覆盖从太赫兹到软X射线, 具有巨大的科学及产业应用前景. 本文在对现有加速器光源—同步辐射光源和自由电子激光简要介绍的基础上, 对SSMB的概念及潜力、原理验证实验进展、核心物理及关键技术挑战、清华SSMB-EUV光源方案及其对科学研究和芯片光刻潜在的变革性影响进行总结论述. 所综述的工作是在我国自己创新性工作基础上进行的, 对于国内读者了解该领域的工作及发展具有一定的帮助.
    Based on the laser manipulation of electron beam, the steady-state micro-bunching (SSMB) mechanism promises an electron bunch length six orders of magnitude smaller than that in a conventional storage ring. With the combination of the strong coherent characteristic of the radiation from micro-bunching and the high repetition rate of a storage ring, high-average-power, narrow-band coherent radiation with wavelengths ranging from THz to soft X-ray can be expected from an SSMB ring. Such a novel light source can provide unprecedented opportunities for accelerator photon science and industry applications like extreme ultraviolet (EUV) lithography. In this paper, the SSMB concept and its potential, the progress of SSMB proof-of-principle experiment, the key physics issues and technical challenges of an SSMB ring, the Tsinghua SSMB-EUV light source and its potential revolutionary influence on scientific research and EUV lithography are all reviewed. Some important results of the SSMB research achieved by us are also presented.
      通信作者: 唐传祥, tang.xuh@tsinghua.edu.cn
      作者简介:
      唐传祥, 清华大学教授. 1992年毕业于清华大学物理系获得理学学士学位, 同时在清华大学电子工程系获得工学学士(第二学位); 1996年清华大学工程物理系获工学博士学位. 2006—2012年曾任清华大学工程物理系系主任. 现任中国核学会常务理事、粒子加速器分会副理事长、辐射物理分会副理事长, 教育部高等学校核工程与核技术专业教学指导委员会副主任, 国务院学位委员会核科学与技术学科评议组秘书长, 国际未来加速器委员会(ICFA)先进新型加速器组(ANA)主席等.  主要从事粒子加速器物理及应用等方面的科研及教学. 主要研究方向包括小型电子直线加速器及其应用、逆康普顿散射X/γ光源、低发射度光阴极微波电子枪、稳态微聚束新概念加速器光源等. 相关科研成果曾获国家科学技术进步一等奖、国家科学技术进步(创新团队)奖、国家自然科学二等奖、北京市科技进步一等奖、中国专利金奖等. 个人曾获得“国家杰出青年基金”、 “北京市优秀教师”、“北京市教育创新标兵”、教育部“新世纪人才”等
    • 基金项目: 清华大学自主科研专项(批准号: 20191081195)和国家自然科学基金(批准号: 12035010)资助的课题
      Corresponding author: Tang Chuan-Xiang, tang.xuh@tsinghua.edu.cn
    • Funds: Project supported by the Tsinghua University Initiative Scientific Research Program, China (Grant No. 20191081195) and the National Natural Science Foundation of China (Grant No. 12035010)
    [1]

    Schwinger J 1949 Phys. Rev. 75 1912Google Scholar

    [2]

    Tzu H Y 1948 Proc. R. Soc. London, Ser. A 192 231Google Scholar

    [3]

    Elder F R, Gurewitsch A W, Langmuir R V, et al. 1947 Phys. Rev. 71 829Google Scholar

    [4]

    Zhao Z T 2010 Rev. Accel. Sci. Technol. 3 57Google Scholar

    [5]

    Chao A W, Chou W 2011 Reviews of Accelerator Science and Technology (Vol. 3) (Singapore: World Scientific) pp57–76

    [6]

    Jiang X, Tang E, Xian D 1995 Rev. Sci. Instrum. 66 2343Google Scholar

    [7]

    National Synchrotron Radiation Laboratory of University of Science and Technology of China 1991 Development Report of Hefei Synchrotron Radiation Accelerator (in Chinese) [国家同步辐射实验室, 中国科学技术大学, 1991年, 合肥同步辐射加速器研制报告]

    [8]

    Jiang M, Yang X, Xi H J, et al. 2009 Chin. Sci. Bull. 54 4171Google Scholar

    [9]

    Jiao Y, Xu G, Cui X H, et al. 2018 J. Synchrotron Radiat. 25 1611Google Scholar

    [10]

    Madey J M 1971 J. Appl. Phys. 42 1906Google Scholar

    [11]

    Deacon D A G, Elias L R, Madey J M J, et al. 1977 Phys. Rev. Lett. 38 892Google Scholar

    [12]

    Kondratenko A, Saldin E 1980 Part. Accel. 10 207

    [13]

    Bonifacio R, Pellegrini C, Narducci L 1984 Opt. Commun. 50 373Google Scholar

    [14]

    Huang Z, Kim K J 2007 Phys. Rev. Spec. Top. Accel. Beams 10 034801Google Scholar

    [15]

    Pellegrini C, Marinelli A, Reiche S 2016 Rev. Mod. Phys. 88 015006Google Scholar

    [16]

    Emma P, Akre R, Arthur J, Bionta R, et al. 2010 Nat. Photonics 4 641Google Scholar

    [17]

    Hans W, Decking W 2017 Proceedings of the 38th International Free Electron Laser Conference Santa Fe, New Mexico, USA, August 20–25, 2017 p9

    [18]

    Zhu Z Y, Zhao Z T, Wang D, et al. 2017 Proceedings of the 38th International Free Electron Laser Conference Santa Fe, NM, USA, August 20–25, 2017 p182

    [19]

    Ratner D F, Chao A W 2010 Phys. Rev. Lett. 105 154801Google Scholar

    [20]

    Nodvick J S, Saxon D S 1954 Phys. Rev. 96 180Google Scholar

    [21]

    Williams G P, Hirschmugl C J, Kneedler E M, et al. 1989 Phys. Rev. Lett. 62 261Google Scholar

    [22]

    Gover A, Ianconescu R, Friedman A, et al. 2019 Rev. Mod. Phys. 91 035003Google Scholar

    [23]

    Jiao Y, Ratner D F, Chao A W 2011 Phys. Rev. Spec. Top. Accel. Beams 14 110702Google Scholar

    [24]

    Chao A, Granados E, Huang X, et al. 2016 Proceedings of the 7th International Particle Accelerator Conference Busan, Korea, May 8–13, 2016 p1048

    [25]

    Khan S 2017 Nucl. Instrum. Methods Phys. Res. A 865 95Google Scholar

    [26]

    Tang C, Deng X, Huang W, et al. 2018 Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources Shanghai, China, March 5–9, 2018 p166

    [27]

    Deng X, Chao A, Huang W, et al. 2018 Proceedings of the 9th International Particle Accelerator Conference Vancouver, Canada, April 29–May 4, 2018 p4583

    [28]

    Deng X, Chao A, Feikes J, et al. 2021 Nature 590 576Google Scholar

    [29]

    Tang C X 2020 The 11th International Particle Accelerator Conference Caen, France, May 10–15, 2020

    [30]

    Feikes J 2021 The 12th International Particle Accelerator Conference Campinas, Brazil, May 24–28, 2021

    [31]

    Rui T, Deng X, Chao A, et al. 2018 Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources Shanghai, China, March 5–9, 2018 p113

    [32]

    Pan Z, Rui T, Wan W, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30, 2019 p700

    [33]

    Li C, Feng C, Jiang B, et al. 2019 Proceedings of the 10th International Particle Accelerator Conference Melbourne, Australia, May 19–24, 2019 p1507

    [34]

    Deng X J, Klein R, Chao A W, et al. 2020 Phys. Rev. Accel. Beams 23 044001Google Scholar

    [35]

    Deng X J, Chao A W, Feikes J, et al. 2020 Phys. Rev. Accel. Beams 23 044002Google Scholar

    [36]

    Deng X J, Chao A W, Huang W H, et al. 2021 Phys. Rev. Accel. Beams 24 094001Google Scholar

    [37]

    Zhang Y, Deng X J, Pan Z L, et al. 2021 Phys. Rev. Accel. Beams 24 090701Google Scholar

    [38]

    Deng X J, Huang W H, Li Z Z, et al. 2021 Nucl. Instrum. Methods Phys. Res. A 1019 165859Google Scholar

    [39]

    潘志龙 2020 博士学位论文 (北京: 清华大学)

    Pan Z L 2020 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [40]

    Deng X J 2021 Ph. D. Dissertation (Beijing: Tsinghua University)

    [41]

    张耀 2022 博士学位论文 (北京: 清华大学)

    Zhang Y 2022 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [42]

    Tsai C Y, Chao A W, Jiao Y, et al. 2021 Phys. Rev. Accel. Beams 24 114401Google Scholar

    [43]

    Teng L 1984 Minimizing the Emittance in Designing the Lattice of an Electron Storage Ring (Fermi National Accelerator Lab.) No. FERMILAB/TM-1269

    [44]

    Eriksson M, Van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837Google Scholar

    [45]

    Bakshi V 2018 EUV Lithography (2nd Ed.) (Bellingham: SPIE Press) pp109–192

    [46]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [47]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [48]

    Carr G, Martin M C, McKinney W R, et al. 2002 Nature 420 153Google Scholar

    [49]

    Cole B E, Williams J B, King B T, et al. 2001 Nature 410 60Google Scholar

    [50]

    Krausz F, Misha I 2009 Rev. Mod. Phys. 81 163Google Scholar

    [51]

    Feikes J, von Hartrott M, Ries M, et al. 2011 Phys. Rev. Spec. Top. Accel. Beams 14 030705Google Scholar

    [52]

    Ries M 2014 Ph. D. Dissertation (Berlin: Humboldt University of Berlin)

    [53]

    Yu L H 1991 Phys. Rev. A 44 5178Google Scholar

    [54]

    Yu L H, Babzien M, Ben-Zvi I, et al. 2000 Science 289 932Google Scholar

    [55]

    Girard B, Lapierre Y, Ortega J M, et al. 1984 Phys. Rev. Lett. 53 2405Google Scholar

    [56]

    Sands M 1970 The Physics of Electron Storage Rings: an Introduction (Stanford Linear Accelerator Center) No. SLAC-121

    [57]

    Courant E, Snyder H S 1958 Ann. Phys. 3 1Google Scholar

    [58]

    Chao A W 1979 J. Appl. Phys. 50 595Google Scholar

    [59]

    Courant E D, Livingston M S, Snyder H S 1952 Phys. Rev. 88 1190Google Scholar

    [60]

    Deng H, Feng C 2013 Phys. Rev. Lett. 111 084801Google Scholar

    [61]

    Feng C, Zhao Z 2017 Sci. Rep. 7 4724Google Scholar

    [62]

    Kubo K, Oide K 2001 Phys. Rev. ST Accel. Beams 4 124401Google Scholar

    [63]

    Krinsky S, Wang J 1982 Part. Accel. 12 107

    [64]

    Saldin E L, Schneidmiller E A, Yurkov M V 2005 Nucl. Instrum. Methods Phys. Res. A 539 499Google Scholar

    [65]

    Liu X 2018 Ph. D. Dissertation (Beijing: Tsinghua University)

    [66]

    Wang H 2020 Ph. D. Dissertation (Beijing: Tsinghua University)

    [67]

    Bakshi V 2018 Proceedings of 2018 Source Workshop Prague, Czech Republic, November 5–7, 2018 pS11

  • 图 1  自由电子激光装置示意图

    Fig. 1.  Schematic of a free-electron laser

    图 2  SSMB储存环(b)与传统储存环(a)对比

    Fig. 2.  Comparison between an SSMB storage ring (b) with a conventional storage ring (a)

    图 3  微聚束的原理示意图

    Fig. 3.  Schematic of the microbunching mechanism

    图 4  (a)普通束团非相干辐射及(b)微聚束相干辐射示意图

    Fig. 4.  (a) Incoherent radiation from a conventional bunch and (b) coherent radiation from a microbunch

    图 5  SSMB原理验证实验示意图(图片来源文献[28])

    Fig. 5.  Schematic setup of the SSMB proof-of-principle experiment (figure from Ref. [28])

    图 6  SSMB原理验证实验结果(均匀填充的束团串产生的波荡器辐射信号波形, 图片来源文献[28])

    Fig. 6.  Result of the SSMB proof-of-principle experiment (Waveforms of the undulator radiation produced from a homogeneous stored bunch train, figure from Ref. [28])

    图 7  SSMB原理验证实验结果(P vs. Ne, 图片来源文献[28])

    Fig. 7.  Result of the SSMB proof-of-principle experiment (P vs. Ne, figure from Ref. [28])

    图 8  纵向强聚焦SSMB原理示意图

    Fig. 8.  Schematic layout of a storage ring using two RF systems (in SSMB laser modulators) for longitudinal strong focusing and an example beam distribution evolution in the longitudinal phase space. Note that the beam distribution in longitudinal phase space at the modulators are tilted

    图 9  横纵向耦合导致的束团拉伸对SSMB中的电流分布造成的影响, 图中$\lambda_{\text{L}}$为调制激光波长

    Fig. 9.  Beam current distributions in an SSMB ring at places with different $\mathcal{H}_{x}$. Bunch length in an SSMB ring can easily be dominated by the horizontal emittance $\varepsilon_{x}$ at places where $\mathcal{H}_{x}\neq0$

    图 10  SSMB-EUV光源辐射能谱样例. 对应$\sigma_{\bot}=5, \; 10,\; $$ 20\ $µm, 辐射总功率分别为39, 7, 1.7 kW. 阴影区对应辐射波长$(13.5\pm {13.5}/{100})$ nm. 计算所用参数: 电子束能量$E_{0}= $$ 400$ MeV, 平均流强$I_{\text{avg}}=1$ A, 调制激光波长$\lambda_{\text{L}} = 1064\; {\rm{nm}}$, 辐射波长$\lambda_{\text{r}}= {\lambda_{\text{L}}}/{79}=13.5$ nm, 辐射波荡器周期长度$\lambda_{{\rm{u}}}= $1 cm, 辐射波荡器参数$K=1.14$, 辐射波荡器周期数Nu = 79

    Fig. 10.  An example EUV SSMB radiation calculation with a microbunch length of 3 nm and different transverse sizes $\sigma_{\bot}$. The total radiation power are 39, 7, 1.7 kW, corresponding to $\sigma_{\bot}=5,\; 10, \;20\ $ µm, respectively. The shaded area corresponds to wavelength of $(13.5\pm {13.5}/{100})$ nm. Parameters used for the calculation: $E_{0}=400$ MeV, $I_{\text{avg}}$ = 1 A, $\lambda_{\text{L}}=1064$ nm, $\lambda_{\text{r}}= {\lambda_{\text{L}}}/{79}=13.5$ nm, $\lambda_{{\rm{u}}}=1$ cm, $K=1.14$, $N_{{\rm{u}}}=79$, and b.w. means bandwidth

    图 11  清华SSMB-EUV光源示意图

    Fig. 11.  Schematic layout of Tsinghua SSMB-EUV light source.

    表 1  清华SSMB-EUV光源总体设计参数

    Table 1.  The design parameters of Tsinghua SSMB-EUV light source

    技术参数单位设计指标
    储存环周长m100—150
    电子束能量MeV$\geqslant 400$
    束流强度A$\geqslant 1$
    辐射波长nm5—100
    13.5 nm EUV功率
    (2%带宽内)
    kW$\geqslant 1$
    13.5 nm EUV峰值/
    平均亮度
    phs/s/mm2/mrad2/
    0.1%b.w.
    $> 10^{23}$
    下载: 导出CSV

    表 2  各类EUV光源特点

    Table 2.  Characteristics of different EUV light sources

        光源原理主要特点
        LPP技术成熟, 已商业化, EUV光功率最高500 W左右, 难以支撑下一代光刻技术的进一步发展
        SR技术成熟, 成本较低, 但EUV光功率达不到EUV光刻大规模量产需求
        SRF-FELEUV光功率可达1—10 kW量级, 造价相对高昂(数十亿), 规模较大(数百米),
    商业化必须做能量回收(ERL), 实现大功率EUV输出, 还需许多技术突破
        SSMBEUV光功率可大于1 kW, 造价(数亿到十亿)及规模(周长$100—150$ m)适中,
    作为一种全新的光源原理, 原理实验验证已经实现, 需要建设运行在EUV波段的
    SSMB加速器光源研究装置, 培养科学及产业用户, 并提高其技术成熟度
    下载: 导出CSV
    Baidu
  • [1]

    Schwinger J 1949 Phys. Rev. 75 1912Google Scholar

    [2]

    Tzu H Y 1948 Proc. R. Soc. London, Ser. A 192 231Google Scholar

    [3]

    Elder F R, Gurewitsch A W, Langmuir R V, et al. 1947 Phys. Rev. 71 829Google Scholar

    [4]

    Zhao Z T 2010 Rev. Accel. Sci. Technol. 3 57Google Scholar

    [5]

    Chao A W, Chou W 2011 Reviews of Accelerator Science and Technology (Vol. 3) (Singapore: World Scientific) pp57–76

    [6]

    Jiang X, Tang E, Xian D 1995 Rev. Sci. Instrum. 66 2343Google Scholar

    [7]

    National Synchrotron Radiation Laboratory of University of Science and Technology of China 1991 Development Report of Hefei Synchrotron Radiation Accelerator (in Chinese) [国家同步辐射实验室, 中国科学技术大学, 1991年, 合肥同步辐射加速器研制报告]

    [8]

    Jiang M, Yang X, Xi H J, et al. 2009 Chin. Sci. Bull. 54 4171Google Scholar

    [9]

    Jiao Y, Xu G, Cui X H, et al. 2018 J. Synchrotron Radiat. 25 1611Google Scholar

    [10]

    Madey J M 1971 J. Appl. Phys. 42 1906Google Scholar

    [11]

    Deacon D A G, Elias L R, Madey J M J, et al. 1977 Phys. Rev. Lett. 38 892Google Scholar

    [12]

    Kondratenko A, Saldin E 1980 Part. Accel. 10 207

    [13]

    Bonifacio R, Pellegrini C, Narducci L 1984 Opt. Commun. 50 373Google Scholar

    [14]

    Huang Z, Kim K J 2007 Phys. Rev. Spec. Top. Accel. Beams 10 034801Google Scholar

    [15]

    Pellegrini C, Marinelli A, Reiche S 2016 Rev. Mod. Phys. 88 015006Google Scholar

    [16]

    Emma P, Akre R, Arthur J, Bionta R, et al. 2010 Nat. Photonics 4 641Google Scholar

    [17]

    Hans W, Decking W 2017 Proceedings of the 38th International Free Electron Laser Conference Santa Fe, New Mexico, USA, August 20–25, 2017 p9

    [18]

    Zhu Z Y, Zhao Z T, Wang D, et al. 2017 Proceedings of the 38th International Free Electron Laser Conference Santa Fe, NM, USA, August 20–25, 2017 p182

    [19]

    Ratner D F, Chao A W 2010 Phys. Rev. Lett. 105 154801Google Scholar

    [20]

    Nodvick J S, Saxon D S 1954 Phys. Rev. 96 180Google Scholar

    [21]

    Williams G P, Hirschmugl C J, Kneedler E M, et al. 1989 Phys. Rev. Lett. 62 261Google Scholar

    [22]

    Gover A, Ianconescu R, Friedman A, et al. 2019 Rev. Mod. Phys. 91 035003Google Scholar

    [23]

    Jiao Y, Ratner D F, Chao A W 2011 Phys. Rev. Spec. Top. Accel. Beams 14 110702Google Scholar

    [24]

    Chao A, Granados E, Huang X, et al. 2016 Proceedings of the 7th International Particle Accelerator Conference Busan, Korea, May 8–13, 2016 p1048

    [25]

    Khan S 2017 Nucl. Instrum. Methods Phys. Res. A 865 95Google Scholar

    [26]

    Tang C, Deng X, Huang W, et al. 2018 Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources Shanghai, China, March 5–9, 2018 p166

    [27]

    Deng X, Chao A, Huang W, et al. 2018 Proceedings of the 9th International Particle Accelerator Conference Vancouver, Canada, April 29–May 4, 2018 p4583

    [28]

    Deng X, Chao A, Feikes J, et al. 2021 Nature 590 576Google Scholar

    [29]

    Tang C X 2020 The 11th International Particle Accelerator Conference Caen, France, May 10–15, 2020

    [30]

    Feikes J 2021 The 12th International Particle Accelerator Conference Campinas, Brazil, May 24–28, 2021

    [31]

    Rui T, Deng X, Chao A, et al. 2018 Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources Shanghai, China, March 5–9, 2018 p113

    [32]

    Pan Z, Rui T, Wan W, et al. 2019 Proceedings of the 39th International Free Electron Laser Conference Hamburg, Germany, August 26–30, 2019 p700

    [33]

    Li C, Feng C, Jiang B, et al. 2019 Proceedings of the 10th International Particle Accelerator Conference Melbourne, Australia, May 19–24, 2019 p1507

    [34]

    Deng X J, Klein R, Chao A W, et al. 2020 Phys. Rev. Accel. Beams 23 044001Google Scholar

    [35]

    Deng X J, Chao A W, Feikes J, et al. 2020 Phys. Rev. Accel. Beams 23 044002Google Scholar

    [36]

    Deng X J, Chao A W, Huang W H, et al. 2021 Phys. Rev. Accel. Beams 24 094001Google Scholar

    [37]

    Zhang Y, Deng X J, Pan Z L, et al. 2021 Phys. Rev. Accel. Beams 24 090701Google Scholar

    [38]

    Deng X J, Huang W H, Li Z Z, et al. 2021 Nucl. Instrum. Methods Phys. Res. A 1019 165859Google Scholar

    [39]

    潘志龙 2020 博士学位论文 (北京: 清华大学)

    Pan Z L 2020 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [40]

    Deng X J 2021 Ph. D. Dissertation (Beijing: Tsinghua University)

    [41]

    张耀 2022 博士学位论文 (北京: 清华大学)

    Zhang Y 2022 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [42]

    Tsai C Y, Chao A W, Jiao Y, et al. 2021 Phys. Rev. Accel. Beams 24 114401Google Scholar

    [43]

    Teng L 1984 Minimizing the Emittance in Designing the Lattice of an Electron Storage Ring (Fermi National Accelerator Lab.) No. FERMILAB/TM-1269

    [44]

    Eriksson M, Van der Veen J F, Quitmann C 2014 J. Synchrotron Radiat. 21 837Google Scholar

    [45]

    Bakshi V 2018 EUV Lithography (2nd Ed.) (Bellingham: SPIE Press) pp109–192

    [46]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [47]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [48]

    Carr G, Martin M C, McKinney W R, et al. 2002 Nature 420 153Google Scholar

    [49]

    Cole B E, Williams J B, King B T, et al. 2001 Nature 410 60Google Scholar

    [50]

    Krausz F, Misha I 2009 Rev. Mod. Phys. 81 163Google Scholar

    [51]

    Feikes J, von Hartrott M, Ries M, et al. 2011 Phys. Rev. Spec. Top. Accel. Beams 14 030705Google Scholar

    [52]

    Ries M 2014 Ph. D. Dissertation (Berlin: Humboldt University of Berlin)

    [53]

    Yu L H 1991 Phys. Rev. A 44 5178Google Scholar

    [54]

    Yu L H, Babzien M, Ben-Zvi I, et al. 2000 Science 289 932Google Scholar

    [55]

    Girard B, Lapierre Y, Ortega J M, et al. 1984 Phys. Rev. Lett. 53 2405Google Scholar

    [56]

    Sands M 1970 The Physics of Electron Storage Rings: an Introduction (Stanford Linear Accelerator Center) No. SLAC-121

    [57]

    Courant E, Snyder H S 1958 Ann. Phys. 3 1Google Scholar

    [58]

    Chao A W 1979 J. Appl. Phys. 50 595Google Scholar

    [59]

    Courant E D, Livingston M S, Snyder H S 1952 Phys. Rev. 88 1190Google Scholar

    [60]

    Deng H, Feng C 2013 Phys. Rev. Lett. 111 084801Google Scholar

    [61]

    Feng C, Zhao Z 2017 Sci. Rep. 7 4724Google Scholar

    [62]

    Kubo K, Oide K 2001 Phys. Rev. ST Accel. Beams 4 124401Google Scholar

    [63]

    Krinsky S, Wang J 1982 Part. Accel. 12 107

    [64]

    Saldin E L, Schneidmiller E A, Yurkov M V 2005 Nucl. Instrum. Methods Phys. Res. A 539 499Google Scholar

    [65]

    Liu X 2018 Ph. D. Dissertation (Beijing: Tsinghua University)

    [66]

    Wang H 2020 Ph. D. Dissertation (Beijing: Tsinghua University)

    [67]

    Bakshi V 2018 Proceedings of 2018 Source Workshop Prague, Czech Republic, November 5–7, 2018 pS11

计量
  • 文章访问数:  80764
  • PDF下载量:  3492
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-04-19
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map