搜索

x
中国物理学会期刊

利用脉冲延迟实现微波波导中量子态存储与异地按需读取

High-fidelity storage and on-demand retrieval of quantum states via a microwave waveguide

CSTR: 32037.14.aps.71.20220477
PDF
HTML
导出引用
  • 量子存储是实现长距离量子通信的关键步骤, 也是量子信息处理的重要基础. 在满足存储时间长、保真度高的基础上, 实现量子态的异地按需读取对构建实用化量子网络有着重要意义. 本文基于受激拉曼绝热路径(stimulated Raman adiabatic passage, STIRAP)的方法, 提出了通过设计可控脉冲延迟在一维微波波导中实现高保真度的量子态存储与异地按需读取的理论方案. 该方案不仅可以根据需求在异地决定读出时间, 且可以降低原始STIRAP方案所需的脉冲面积, 降低能量消耗. 数值计算的结果表明, 该方案实现的保真度对波导中的平均热光子数及读出脉冲的持续时间均有较强的鲁棒性.

     

    On-demand quantum memory is an important step towards practical applications in various quantum information tasks such as long-distance entanglement distribution, quantum computation, and quantum networks. In this work, based on stimulated Raman adiabatic passage (STIRAP) protocol, we introduce a controllable delay between the reading pulse and writing pulse so that the quantum state can be stored in the superconducting waveguide and finally retrieved on demand with high fidelity. Through systematic numerical simulations, we find that if the duration of the writing pulse is set to be in a certain range, the readout unit is capable of retrieving the quantum state stored in the waveguide with high fidelity at any moment after a critical time. Moreover, we also investigate the robustness of our protocol, and find that the fidelity is robust against both the average number of thermal photons in the waveguide and the duration of the reading pulse. The numerical results also show that the pulse area in our protocol is only about one third of that in the original STIRAP protocol. Our protocol provides a practical way to combine the advantages of both on-demand quantum memory and the STIRAP protocol.

     

    目录

    /

    返回文章
    返回
    Baidu
    map