搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁性隧道结的群体编码实现无监督聚类

张亚君 蔡佳林 乔亚 曾中明 袁喆 夏钶

引用本文:
Citation:

基于磁性隧道结的群体编码实现无监督聚类

张亚君, 蔡佳林, 乔亚, 曾中明, 袁喆, 夏钶

Implementation of unsupervised clustering based on population coding of magnetic tunnel junctions

Zhang Ya-Jun, Cai Jia-Lin, Qiao Ya, Zeng Zhong-Ming, Yuan Zhe, Xia Ke
cstr: 32037.14.aps.71.20220252
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 利用新型材料器件发展类脑计算硬件研究的关键问题是发展出合适的算法, 能够发挥新器件的特点和优势. 群体编码是生物神经系统常见的编码方式, 能够有效去除噪音, 实现短时程记忆及复杂的非线性映射功能. 本文选择自旋电子学器件中研究较多、工艺较成熟的磁性隧道结, 应用其可调控的随机动力学实现群体编码. 作为一个应用的例子, 超顺磁隧道结构建的二层脉冲神经网络成功完成了鸢尾花数据集的无监督聚类. 数值仿真表明基于磁性隧道结的群体编码可以有效对抗器件的非均一性, 为类脑计算硬件研究提供重要的参考.
    Developing suitable algorithms that utilize the natural advantages of the corresponding devices is a key issue in the hardware research of brain-inspired computing. Population coding is one of the computational schemes in biological neural systems and it contains the mechanisms for noise reduction, short-term memory and implementation of complex nonlinear functions. Here we show the controllable stochastic dynamical behaviors for the technically mature spintronic device, magnetic tunnel junctions, which can be used as the basis of population coding. As an example, we construct a two-layer spiking neural network, in which groups of magnetic tunnel junctions are used to code input data. After unsupervised learning, this spiking neural network successfully classifies the iris data set. Numerical simulation demonstrates that the population coding is robust enough against the nonuniform dispersion in devices, which is inevitable in fabrication and integration of hardware devices.
      通信作者: 曾中明, zmzeng2012@sinano.ac.cn ; 袁喆, zyuan@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11734004, 12174028)资助的课题.
      Corresponding author: Zeng Zhong-Ming, zmzeng2012@sinano.ac.cn ; Yuan Zhe, zyuan@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11734004, 12174028)
    [1]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [2]

    Roy K, Jaiswal A, Panda P 2019 Nature 575 607Google Scholar

    [3]

    Davies M, Srinivasa N, Lin T H, et al. 2018 IEEE Micro. 38 82Google Scholar

    [4]

    Pei J, Deng L, Song S, et al. 2019 Nature 572 106Google Scholar

    [5]

    Ambrogio S, Narayanan P, Tsai H, Shelby R M, Boybat I, di Nolfo C, Sidler S, Giordano M, Bodini M, Farinha N C P, Killeen B, Cheng C, Jaoudi Y, Burr G W 2018 Nature 558 60Google Scholar

    [6]

    Torrejon J, Riou M, Araujo F A, et al. 2017 Nature 547 428Google Scholar

    [7]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [8]

    Zhang X M, Zhuo Y, Luo Q, et al. 2020 Nat. Commun. 11 51Google Scholar

    [9]

    Zhang Y, Wang Z R, Zhu J D, Yang Y C, Rao M Y, Song W H, Zhuo Y, Zhang X M, Cui M L, Shen L L, Huang R, Yang J J 2020 Appl. Phys. Rev. 7 011308Google Scholar

    [10]

    Jung S, Lee H, Myung S, et al. 2022 Nature 601 211Google Scholar

    [11]

    Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S, Stiles M D 2020 Nat. Electron. 3 360Google Scholar

    [12]

    Lan X K, Cao Y, Liu X Y, Xu K J, Liu C, Zheng H Z, Wang K Y 2021 Adv. Intell. Syst. 3 2000182Google Scholar

    [13]

    Jiang W C, Chen L N, Zhou K Y, Li L Y, Fu Q W, Du Y W, Liu R H 2019 Appl. Phys. Lett. 115 192403Google Scholar

    [14]

    Zhang Y J, Zheng Q, Zhu X R, Yuan Z, Xia K 2020 Sci. China Phys. Mech. Astron. 63 277531Google Scholar

    [15]

    Zheng Q, Mi Y Y, Zhu X R, Yuan Z, Xia K 2020 Phys. Rev. Appl. 14 044060Google Scholar

    [16]

    Zheng Q, Zhu X R, Mi Y Y, Yuan Z, Xia K 2020 AIP Adv. 10 025116Google Scholar

    [17]

    Sengupta A, Roy K 2016 Phys. Rev. Appl. 5 024012Google Scholar

    [18]

    Yu W C, Xiao J, Bauer G E W 2021 Phys. Rev. B 104 L180405Google Scholar

    [19]

    Song K M, Jeong J S, Pan B, et al. 2020 Nat. Electron. 3 148Google Scholar

    [20]

    Kurenkov A, DuttaGupta S, Zhang C, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 e1900636Google Scholar

    [21]

    Romera M, Talatchian P, Tsunegi S, et al. 2018 Nature 563 230Google Scholar

    [22]

    Banino A, Barry C, Uria B, et al. 2018 Nature 557 429Google Scholar

    [23]

    Mi Y, Katkov M, Tsodyks M 2017 Neuron 93 323Google Scholar

    [24]

    Pouget A, Dayan P, Zemel R 2000 Nat. Rev. Neurosci. 1 125Google Scholar

    [25]

    Thakur C S, Wang R, Hamilton T J, Tapson J, van Schaik A 2016 IEEE Transactions on Circuits and Systems I: Regular Papers 63 211Google Scholar

    [26]

    Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [27]

    Mizrahi A, Hirtzlin T, Fukushima A, Kubota H, Yuasa S, Grollier J, Querlioz D 2018 Nat. Commun. 9 1533Google Scholar

    [28]

    Cai J L, Fang B, Zhang L K, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015Google Scholar

    [29]

    Cai K M, Yang M Y, Ju H L, et al. 2017 Nat. Mater. 16 712Google Scholar

    [30]

    Li Z, Zhang S 2004 Phys. Rev. B 69 134416Google Scholar

    [31]

    Diehl P U, Cook M 2015 Front. Comput. Neurosci. 9 99Google Scholar

    [32]

    Fisher R A 1936 Annals of Eugenics 7 179Google Scholar

    [33]

    Dayan P, Abbott L F 2001 Theoretical Neuroscience (Cambridge, MA: MIT Press) pp108–112

    [34]

    Biswas A, Prasad S, Lashkare S, Ganguly U 2016 arXiv: 1612.02233

    [35]

    Hayakawa K, Kanai S, Funatsu T, Igarashi J, Jinnai B, Borders W A, Ohno H, Fukami S 2021 Phys. Rev. Lett. 126 117202Google Scholar

  • 图 1  (a) 磁性隧道结示意图; (b) 不同电流下磁性隧道结电阻随时间的变化; (c) 磁性隧道结翻转频率与电流的函数关系; (d) 一组存在不同偏置电流的隧道结实现群体编码 (散点为Néel-Brown理论仿真结果, 实线对应隧道结的调谐曲线)

    Fig. 1.  (a) Schematic of a magnetic tunnel junction; (b) measured electrical resistance of a magnetic tunnel junction as a function of time under different electrical currents; (c) switching frequency of a magnetic tunnel junction as a function of electrical current; (d) population coding using a group of magnetic tunnel junctions with different bias currents (The dots are simulated data using the Néel-Brown theory and the solid lines are the corresponding tuning curves).

    图 2  (a) 群体编码脉冲神经网络示意图; (b) 网络训练过程示意图; (c) 鸢尾花数据集无监督聚类测试结果; (d) 用于编码一个数据的隧道结数目与输出神经元数量对网络聚类正确率的影响

    Fig. 2.  (a) Schematic of spiking neural network; (b) schematic illustration of the network learning process; (c) test results of the unsupervised classification of the iris data set; (d) the influence of number of magnetic tunnel junctions used in the population coding and number of output neurons.

    图 3  磁性隧道结(a)势垒和(b)翻转临界电流的不均一性对网络性能的影响

    Fig. 3.  Population coding using the magnetic tunnel junctions with a fluctuation in their (a) energy barriers and (b) critical currents for switching.

    图 4  不同观测时间(以采样时间dt为单位)对网络执行无监督聚类正确率的影响(上轴表示每个观测时间对应的能耗)

    Fig. 4.  Classification accuracy of unsupervised clustering performed by the network as a function of the different observation time (The upper axis shows the energy consumption corresponding to each observation time).

    Baidu
  • [1]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [2]

    Roy K, Jaiswal A, Panda P 2019 Nature 575 607Google Scholar

    [3]

    Davies M, Srinivasa N, Lin T H, et al. 2018 IEEE Micro. 38 82Google Scholar

    [4]

    Pei J, Deng L, Song S, et al. 2019 Nature 572 106Google Scholar

    [5]

    Ambrogio S, Narayanan P, Tsai H, Shelby R M, Boybat I, di Nolfo C, Sidler S, Giordano M, Bodini M, Farinha N C P, Killeen B, Cheng C, Jaoudi Y, Burr G W 2018 Nature 558 60Google Scholar

    [6]

    Torrejon J, Riou M, Araujo F A, et al. 2017 Nature 547 428Google Scholar

    [7]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [8]

    Zhang X M, Zhuo Y, Luo Q, et al. 2020 Nat. Commun. 11 51Google Scholar

    [9]

    Zhang Y, Wang Z R, Zhu J D, Yang Y C, Rao M Y, Song W H, Zhuo Y, Zhang X M, Cui M L, Shen L L, Huang R, Yang J J 2020 Appl. Phys. Rev. 7 011308Google Scholar

    [10]

    Jung S, Lee H, Myung S, et al. 2022 Nature 601 211Google Scholar

    [11]

    Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S, Stiles M D 2020 Nat. Electron. 3 360Google Scholar

    [12]

    Lan X K, Cao Y, Liu X Y, Xu K J, Liu C, Zheng H Z, Wang K Y 2021 Adv. Intell. Syst. 3 2000182Google Scholar

    [13]

    Jiang W C, Chen L N, Zhou K Y, Li L Y, Fu Q W, Du Y W, Liu R H 2019 Appl. Phys. Lett. 115 192403Google Scholar

    [14]

    Zhang Y J, Zheng Q, Zhu X R, Yuan Z, Xia K 2020 Sci. China Phys. Mech. Astron. 63 277531Google Scholar

    [15]

    Zheng Q, Mi Y Y, Zhu X R, Yuan Z, Xia K 2020 Phys. Rev. Appl. 14 044060Google Scholar

    [16]

    Zheng Q, Zhu X R, Mi Y Y, Yuan Z, Xia K 2020 AIP Adv. 10 025116Google Scholar

    [17]

    Sengupta A, Roy K 2016 Phys. Rev. Appl. 5 024012Google Scholar

    [18]

    Yu W C, Xiao J, Bauer G E W 2021 Phys. Rev. B 104 L180405Google Scholar

    [19]

    Song K M, Jeong J S, Pan B, et al. 2020 Nat. Electron. 3 148Google Scholar

    [20]

    Kurenkov A, DuttaGupta S, Zhang C, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 e1900636Google Scholar

    [21]

    Romera M, Talatchian P, Tsunegi S, et al. 2018 Nature 563 230Google Scholar

    [22]

    Banino A, Barry C, Uria B, et al. 2018 Nature 557 429Google Scholar

    [23]

    Mi Y, Katkov M, Tsodyks M 2017 Neuron 93 323Google Scholar

    [24]

    Pouget A, Dayan P, Zemel R 2000 Nat. Rev. Neurosci. 1 125Google Scholar

    [25]

    Thakur C S, Wang R, Hamilton T J, Tapson J, van Schaik A 2016 IEEE Transactions on Circuits and Systems I: Regular Papers 63 211Google Scholar

    [26]

    Tuma T, Pantazi A, Le Gallo M, Sebastian A, Eleftheriou E 2016 Nat. Nanotechnol. 11 693Google Scholar

    [27]

    Mizrahi A, Hirtzlin T, Fukushima A, Kubota H, Yuasa S, Grollier J, Querlioz D 2018 Nat. Commun. 9 1533Google Scholar

    [28]

    Cai J L, Fang B, Zhang L K, Lv W X, Zhang B S, Zhou T J, Finocchio G, Zeng Z M 2019 Phys. Rev. Appl. 11 034015Google Scholar

    [29]

    Cai K M, Yang M Y, Ju H L, et al. 2017 Nat. Mater. 16 712Google Scholar

    [30]

    Li Z, Zhang S 2004 Phys. Rev. B 69 134416Google Scholar

    [31]

    Diehl P U, Cook M 2015 Front. Comput. Neurosci. 9 99Google Scholar

    [32]

    Fisher R A 1936 Annals of Eugenics 7 179Google Scholar

    [33]

    Dayan P, Abbott L F 2001 Theoretical Neuroscience (Cambridge, MA: MIT Press) pp108–112

    [34]

    Biswas A, Prasad S, Lashkare S, Ganguly U 2016 arXiv: 1612.02233

    [35]

    Hayakawa K, Kanai S, Funatsu T, Igarashi J, Jinnai B, Borders W A, Ohno H, Fukami S 2021 Phys. Rev. Lett. 126 117202Google Scholar

计量
  • 文章访问数:  7095
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 修回日期:  2022-04-13
  • 上网日期:  2022-07-04
  • 刊出日期:  2022-07-20

/

返回文章
返回
Baidu
map