搜索

x
中国物理学会期刊

多孔石墨烯时间维度反渗透滤盐机理研究

Temporal reverse osmotic salt filtration mechanism of multi-layered porous graphene

CSTR: 32037.14.aps.71.20212283
PDF
HTML
导出引用
  • 时间维度选择性反渗透原理虽然克服了反渗透膜微孔尺寸的限制, 一定程度上突破了渗透性和选择性之间的平衡, 但多层反渗透膜时间维度的滤盐机理尚未明晰. 本文采用分子动力学方法, 揭示了多孔石墨烯反渗透膜的厚度和剪切速度对盐水反渗透特性的影响规律. 结果表明, 随着多孔石墨烯反渗透膜旋转速度的增加, 离子截留率增加而水通量先增加后降低; 反渗透膜厚度的增加会提高离子截留率, 但阻碍了水通量的上升. 本文创新性地对三层石墨烯反渗透膜上的纳米孔结构进行了设计研究, 发现梯度孔结构在保证高选择性的同时提高了渗透性; 供给端最内层纳米孔径的变化对水通量的影响最为显著, 水通量随该孔径的增加而快速上升. 研究结果进一步阐明并验证了时间维度反渗透滤盐机理, 利用梯度孔的设计提升了相同膜厚度情况下的水通量, 为大尺度滤盐设备的设计研发提供了理论基础.

     

    Reverse osmosis (RO) technology is currently the most progressive, energy-saving and efficient membrane separation technology . Meanwhile, graphene becomes a promising candidate for fabricating the RO membranes in water desalination due to its high salt rejection and water flux. The concept of “temporal selectivity” is first proposed in our previous work in terms of the time difference between the penetration time of an ion passing through the pore and the tangential slipping time for the ion sliding across the pore. Nevertheless, the temporal selectivity mechanism of multilayered graphene membrane remains ambiguous. In this paper, the RO process of saltwater through porous graphene column RO membrane is studied by using molecular dynamics (MD) simulations method, and the effects of rotating angular velocity and the thickness of RO membrane on desalination performance of seawater are considered first. The MD results show that the salt rejection increases with the rotation speed of porous membrane increasing while the water flux initially increases and then decreases . Meanwhile, the interfacial slip velocity increases linearly with angular velocity increasing. On the other hand, the increasing thickness of porous graphene membrane can enhance the selectivity and reduce the permeability of water molecules. As expected, the tri-layered porous graphene RO membrane can achieve high salt rejection at low interfacial slip velocity. In order to ensure high selectivity and energy conservation and efficient, the pore structure of the porous graphene RO membrane is optimized. The results show that the optimized nanopores can increase the water flux significantly, whereas the salt rejection is not changed appreciably. It is found that the pore size of the innermost layer membrane near the feed region has the most significant effect on the water flux. The water flux increases sharply with the increase of pore diameter and the salt rejection remains totally higher than 80%. Moreover, the RO membrane with a special Type 3 structure exhibits excellent performance in seawater desalination, specifically, the ultrahigh water flux reaches 20029 L·cm–2·d–1 and the super salt rejection arrives at 94%. The research results further clarify and verify the mechanism of the temporal selectivity in RO process, and improve the water flux under the condition of the same membrane thickness by designing gradient hole. The findings can conduce to the in-depth theoretical understanding of porous graphene-based membranes and designing and developing the large-scale seawater desalination devices and water filtration equipment.

     

    目录

    /

    返回文章
    返回
    Baidu
    map