搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双腔比对折射率法测定气体压力

刘洋洋 胡常乐 孙羽 王进 胡水明

引用本文:
Citation:

双腔比对折射率法测定气体压力

刘洋洋, 胡常乐, 孙羽, 王进, 胡水明
cstr: 32037.14.aps.71.20212234

Measurement of gas pressure by double-cavity comparison refractive index method

Liu Yang-Yang, Hu Chang-Le, Sun Yu, Wang Jin, Hu Shui-Ming
cstr: 32037.14.aps.71.20212234
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 搭建了基于气体折射率方法的气体压力测量装置, 测量区间为10—100 kPa, 采用双腔比对方法对装置进行了检验. 通过将两个真空腔体分别控温, 并且真空连通, 保证了两个腔内气体压力相同. 以高纯氮气(6N)为气体介质, 在不同气体压力条件下, 得到了双腔对比测量的初步结果. 结果显示, 基于光学方法的气体折射率压力计重复度高于30 × 10–6, 显著好于商用电容式薄膜压力计, 说明该方法具有很大潜力. 本文还分析了测量中的误差来源, 并计划通过改进系统设计以提高测量精度.
    A gas pressure measurement device is built based on the gas refractive index method, and the measurement range is from 10 kPa to 100 kPa, and the device is tested by a dual-cavity comparison method. The temperature of the two vacuum chambers is separately controlled and the two cavities are connected to ensure that the gas pressures in the two cavities are the same. Using high-purity nitrogen (6N) as the gas medium, under the condition of different gas pressures, the dual-cavity comparative measurements are conducted. The results show that the optical pressure gauge has a repeatability better than 30 × 10–6, which is significantly better than the commercial capacitive pressure gauge, indicating that this method has great potential applications. Sources of error and uncertainty in the measurement are analyzed, and it is planned to design a new system to improve the measurement.
      通信作者: 王进, jinwang@ustc.edu.cn
    • 基金项目: 中国科学院战略先导科技专项(C类)(批准号: XDC07010000)资助的课题.
      Corresponding author: Wang Jin, jinwang@ustc.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program (C) of Chinese Academy of Science (Grant No. XDC07010000).
    [1]

    Tilford C R 1994 Metrologia 30 545Google Scholar

    [2]

    Hendricks J H, Olson D A 2010 Measurement 43 664Google Scholar

    [3]

    Pendrill L R 2004 Metrologia 41 S40Google Scholar

    [4]

    May E F, Pitre L, Mehl J B, Moldover M R, Schmidt J W 2004 Rev. Sci. Instrum. 75 3307Google Scholar

    [5]

    Andersson M, Eliasson L, Pendrill L R 1987 Appl. Opt. 26 4835Google Scholar

    [6]

    Birch K P 1991 J. Opt. Soc. Am. A 8 647Google Scholar

    [7]

    Fang H, Juncar P 1999 Rev. Sci. Instrum. 70 3160Google Scholar

    [8]

    Fox R W, Washburn B R, Newbury N R, Hollberg L 2005 Appl. Opt. 44 7793Google Scholar

    [9]

    Zhang J, Lu Z H, Menegozzi B, Wang L J 2006 Rev. Sci. Instrum. 77 083104Google Scholar

    [10]

    许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明 2020 69 150601Google Scholar

    Xu Y R, Liu Y Y, Wang J, Sun Y, Xi Z H, Li D T, Hu S M 2020 Acta Phys. Sin. 69 150601Google Scholar

    [11]

    Egan P, Stone J A 2011 Appl. Opt. 50 3076Google Scholar

    [12]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [13]

    Amorski C, Casida M E, Salahub D R 1996 J. Chem. Phys. 104 5134Google Scholar

    [14]

    Egan P F, Stone J A, Scherschligt J K, Harvey A H 2019 J. Vac. Sci. Technol. A 37 031603Google Scholar

    [15]

    Ewing M B, Royal D D 2002 J. Chem. Thermodyn. 34 1089Google Scholar

  • 图 1  双腔比对测量光路示意图, Laser 1为NKT窄线宽激光器, Laser 2为自制ECDL, IO为隔离器, EOM为电光调制器, counter为频率计, C为光纤耦合头, PD为光电探测器

    Fig. 1.  Schematic diagram of the optical path of the dual cavity comparison measurement. Laser 1 is an NKT narrow linewidth laser, Laser 2 is a self-made ECDL, IO is an isolator, EOM is an electro-optic modulator, counter is a frequency meter, and C is an optical fiber coupler.

    图 2  (a) 真空腔体结构示意图, Sensor 1—3为控温铂电阻温度计, Sensor A—D为测温铂电阻温度计; (b)真空腔体实物图

    Fig. 2.  (a) A schematic diagram of the vacuum cavity structure, in which sensor 1–3 are temperature-controlled platinum resistance thermometers, and sensor A–D are temperature-measured platinum resistance thermometers; (b) the physical map of the vacuum cavity.

    图 3  (a)1#腔体控温结果; (b) 2#腔体控温结果, 其中A为腔体侧面温度, B, C为两端盖板温度

    Fig. 3.  (a) Temperature controlled result of 1# cavity; (b) temperature controlled result of 2# cavity, where A is the temperature of the side of the cavity, B and C are the temperatures of the cover plates at each end.

    图 4  锁频激光频率随时间的变化

    Fig. 4.  Frequency of frequency-locked laser varies with cavity temperature.

    图 5  双腔比对压力测量结果, 其中, 彩色点代表的是双腔测量得到的气体压力之差, a—f共6组重复实验, 黑色代表的是其中一次腔体测得的气体压力与薄膜压力计读数之差, 红线为双腔结果之差的平均值$\Delta P=3.0\pm 3\;\mathrm{P}\mathrm{a}$

    Fig. 5.  Comparison of the pressure measurement results of the dual cavities, where the colored dots represent the difference between the gas pressures measured by the two cavities, a to f totals 6 sets of repeated experiments, and the black represents the difference between the reading of pressure gauge and the gas pressures measured by one of the cavity, the red line is the average value of the pressure measurement results of the dual cavities ∆P=3.0±3 Pa.

    图 6  充气过程中测温sensor读数, 其中黄色部分为充气过程, 绿色部分为充气稳定状态

    Fig. 6.  The readout of the temperature sensor during the inflation process. The yellow part is the inflation process, and the green part is the duration when the inflation is stable .

    Baidu
  • [1]

    Tilford C R 1994 Metrologia 30 545Google Scholar

    [2]

    Hendricks J H, Olson D A 2010 Measurement 43 664Google Scholar

    [3]

    Pendrill L R 2004 Metrologia 41 S40Google Scholar

    [4]

    May E F, Pitre L, Mehl J B, Moldover M R, Schmidt J W 2004 Rev. Sci. Instrum. 75 3307Google Scholar

    [5]

    Andersson M, Eliasson L, Pendrill L R 1987 Appl. Opt. 26 4835Google Scholar

    [6]

    Birch K P 1991 J. Opt. Soc. Am. A 8 647Google Scholar

    [7]

    Fang H, Juncar P 1999 Rev. Sci. Instrum. 70 3160Google Scholar

    [8]

    Fox R W, Washburn B R, Newbury N R, Hollberg L 2005 Appl. Opt. 44 7793Google Scholar

    [9]

    Zhang J, Lu Z H, Menegozzi B, Wang L J 2006 Rev. Sci. Instrum. 77 083104Google Scholar

    [10]

    许玉蓉, 刘洋洋, 王进, 孙羽, 习振华, 李得天, 胡水明 2020 69 150601Google Scholar

    Xu Y R, Liu Y Y, Wang J, Sun Y, Xi Z H, Li D T, Hu S M 2020 Acta Phys. Sin. 69 150601Google Scholar

    [11]

    Egan P, Stone J A 2011 Appl. Opt. 50 3076Google Scholar

    [12]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [13]

    Amorski C, Casida M E, Salahub D R 1996 J. Chem. Phys. 104 5134Google Scholar

    [14]

    Egan P F, Stone J A, Scherschligt J K, Harvey A H 2019 J. Vac. Sci. Technol. A 37 031603Google Scholar

    [15]

    Ewing M B, Royal D D 2002 J. Chem. Thermodyn. 34 1089Google Scholar

计量
  • 文章访问数:  6189
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2021-12-22
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map