搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

束缚态特征温度方法及应用

何新 江涛 张振福 杨俊波

引用本文:
Citation:

束缚态特征温度方法及应用

何新, 江涛, 张振福, 杨俊波
cstr: 32037.14.aps.71.20212115

Bound-state characteristic temperature method and its applications

He Xin, Jiang Tao, Zhang Zhen-Fu, Yang Jun-Bo
cstr: 32037.14.aps.71.20212115
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 随着高超声速飞行器速度增大, 激波层空气等离子体中的原子发射谱线成为辐射加热主要来源, 因此研究原子激发非常重要. 考虑到处于热非平衡态的空气等离子体, 平衡态统计理论不适用. 精细物理模型(如碰撞辐射模型)虽然可以处理热非平衡问题且准确度高, 但计算量太大, 难于工程应用. 本文采用束缚态特征温度法, 结合FIRE II激波管实验中的非平衡空气等离子体, 对原子激发进行了分析. 计算得到的原子能级布居与碰撞辐射模型符合, 说明简化计算是合理的, 计算效率提高了2000倍以上, 且能够保证一定的精度.
    As the speed of a hypersonic vehicle increases, atomic emission lines in the shock-layer will be a main source of radiative heating. Therefore, it is very important to study the atomic excitation in the air plasma in the shock layer. For a thermal nonequilibrium air plasma, the equilibrium statistical theory is not applicable. Although full models (such as the collisional-radiative model) can be used to solve nonequilibrium problems with high accuracy, they are too expensive computationally and difficult to apply to engineering. In this work, we investigate the atomic excitation in air plasmas by the bound-state characteristic temperature (BCT) method. Some cases of equilibrium and nonequilibrium air plasmas associated with the well-known FIRE II flight experiment are considered. The calculated atomic energy level populations are in good agreement with those from the CR model, thereby showing that our calculation is reasonable and has a good accuracy. The computational efficiency is more than 2000 times higher than that from the CR model. If it is used in the flow field of a hypersonic vehicle, the computational cost can be greatly reduced.
      通信作者: 江涛, fengqiaoren999@163.com
    • 基金项目: 国家数值风洞工程(批准号: NNW2019ZT3-B07)资助的课题
      Corresponding author: Jiang Tao, fengqiaoren999@163.com
    • Funds: Project supported by the National Numerical Windtunnel, China (Grant No. NNW2019ZT3-B07).
    [1]

    Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) pp6–28

    [2]

    Park C 1993 J. Spacecr. Rockets 7 385

    [3]

    Hansen S B, Chung H K, Fontes C J, Ralchenko Y, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar

    [4]

    Piron R, Gilleron F, Aglitskiy Y, Chung H K, Fontes C J, Hansen S B, Marchuk O, Scott H A, Stambulchik E, Ralchenko Y 2017 High Energy Density Phys. 23 38Google Scholar

    [5]

    Shang J S, Surzhikov S T 2011 J. Spacecr. Rockets 48 385Google Scholar

    [6]

    Tauber M E, Palmer G E, Yand L 1992 J. Thermophys. Heat Transf. 6 193Google Scholar

    [7]

    Johnston C O 2006 Ph. D. Dissertation (Blacksburg: Virginia Polytechnic Institute and State University)

    [8]

    吴泽清 2000 博士学位论文(北京: 中国工程物理研究院)

    Wu Z 2000 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [9]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley and Los Angeles: University of California Press) p2

    [10]

    Ralchenko Y 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Berlin: Springer International Publishing) p127

    [11]

    Gao C, Jin F, Zeng J, Yuan J 2013 New J. Phys. 15 015022Google Scholar

    [12]

    高城 2011 博士学位论文(长沙: 国防科技大学)

    Gao C 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    Surzhikov S T 2012 J. Heat Transf.-Trans. ASME 134 031002Google Scholar

    [14]

    Bansal A, Modest M F, Levin D A 2011 J. Quant. Spectrosc. Radiat. Transf. 112 1213Google Scholar

    [15]

    Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [16]

    Fujita K, Abe T 1997 Institute of Space & Astronautical Science Report 669 1

    [17]

    Dong S K, Ma Y, Tan H P 2008 J. Thermophys. Heat Transf. 22 301Google Scholar

    [18]

    Ozawa T, Modest M F, Levin D A 2010 J. Heat Transf.-Trans. ASME 132 023406Google Scholar

    [19]

    He X, Chang S L, Dai S A, Yang J C 2013 Chin. Phys. Lett. 30 114401Google Scholar

    [20]

    何新, 江涛, 高城, 张振福, 杨俊波 2021 70 145202Google Scholar

    He X, Jiang T, Gao C, Zhang Z F, Yang J B 2021 Acta Phys. Sin. 70 145202Google Scholar

    [21]

    Panesi M, Magin T, Bourdon A, Bultel A, Chazot O 2009 J. Thermophys. Heat Transf. 23 236Google Scholar

    [22]

    He X, Dang W H, Jia H H, Yin H W, Zhang H L, Chang S L, Yang J C 2014 Chin. Phys. Lett. 31 095204Google Scholar

    [23]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://physics.nist.gov/asd [2021-10-10]

  • 图 1  状态点1634-25的氮原子能级布居

    Fig. 1.  Energy level populations for N of Case 1634-25.

    图 2  状态点1634-10的氮原子和氧原子能级布居 (a) N; (b) O

    Fig. 2.  Energy level populations for N and O of Case 1634-10: (a) N; (b) O.

    图 3  状态点1634-7的氮原子能级布居

    Fig. 3.  Energy level populations for N of Case 1634-7.

    图 4  状态点1636-5的氮原子和氧原子能级布居 (a) N; (b) O

    Fig. 4.  Energy level populations for N and O of Case 1636-5: (a) N; (b) O.

    图 5  状态点1643-5的氧原子能级布居

    Fig. 5.  Energy level populations for O of Case 1643-5.

    表 1  空气等离子体参数

    Table 1.  Parameters of air plasmas.

    Fire II时间点/s163416361643
    距离激波面/mm2510755
    Te/K1029912899134091186810473
    N/(1016 cm–3)1.811.281.223.75
    N+/(1014 cm–3)24.908.057.7850.10
    O/(1015 cm–3)3.4210.7035.80
    O+/(1014 cm–3)1.518.3812.10
    ne/(1014 cm–3)29.009.688.9967.30106.00
    热力学状态近平衡非平衡非平衡非平衡近平衡
    下载: 导出CSV
    Baidu
  • [1]

    Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) pp6–28

    [2]

    Park C 1993 J. Spacecr. Rockets 7 385

    [3]

    Hansen S B, Chung H K, Fontes C J, Ralchenko Y, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar

    [4]

    Piron R, Gilleron F, Aglitskiy Y, Chung H K, Fontes C J, Hansen S B, Marchuk O, Scott H A, Stambulchik E, Ralchenko Y 2017 High Energy Density Phys. 23 38Google Scholar

    [5]

    Shang J S, Surzhikov S T 2011 J. Spacecr. Rockets 48 385Google Scholar

    [6]

    Tauber M E, Palmer G E, Yand L 1992 J. Thermophys. Heat Transf. 6 193Google Scholar

    [7]

    Johnston C O 2006 Ph. D. Dissertation (Blacksburg: Virginia Polytechnic Institute and State University)

    [8]

    吴泽清 2000 博士学位论文(北京: 中国工程物理研究院)

    Wu Z 2000 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [9]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley and Los Angeles: University of California Press) p2

    [10]

    Ralchenko Y 2016 Modern Methods in Collisional-Radiative Modeling of Plasmas (Berlin: Springer International Publishing) p127

    [11]

    Gao C, Jin F, Zeng J, Yuan J 2013 New J. Phys. 15 015022Google Scholar

    [12]

    高城 2011 博士学位论文(长沙: 国防科技大学)

    Gao C 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    Surzhikov S T 2012 J. Heat Transf.-Trans. ASME 134 031002Google Scholar

    [14]

    Bansal A, Modest M F, Levin D A 2011 J. Quant. Spectrosc. Radiat. Transf. 112 1213Google Scholar

    [15]

    Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)

    [16]

    Fujita K, Abe T 1997 Institute of Space & Astronautical Science Report 669 1

    [17]

    Dong S K, Ma Y, Tan H P 2008 J. Thermophys. Heat Transf. 22 301Google Scholar

    [18]

    Ozawa T, Modest M F, Levin D A 2010 J. Heat Transf.-Trans. ASME 132 023406Google Scholar

    [19]

    He X, Chang S L, Dai S A, Yang J C 2013 Chin. Phys. Lett. 30 114401Google Scholar

    [20]

    何新, 江涛, 高城, 张振福, 杨俊波 2021 70 145202Google Scholar

    He X, Jiang T, Gao C, Zhang Z F, Yang J B 2021 Acta Phys. Sin. 70 145202Google Scholar

    [21]

    Panesi M, Magin T, Bourdon A, Bultel A, Chazot O 2009 J. Thermophys. Heat Transf. 23 236Google Scholar

    [22]

    He X, Dang W H, Jia H H, Yin H W, Zhang H L, Chang S L, Yang J C 2014 Chin. Phys. Lett. 31 095204Google Scholar

    [23]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://physics.nist.gov/asd [2021-10-10]

计量
  • 文章访问数:  6160
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2021-12-19
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map