搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学反馈腔增强吸收光谱技术中干涉抑制方法

程桐 杨天悦 宫廷 郭古青 邱选兵 李传亮 赵刚 马维光

引用本文:
Citation:

光学反馈腔增强吸收光谱技术中干涉抑制方法

程桐, 杨天悦, 宫廷, 郭古青, 邱选兵, 李传亮, 赵刚, 马维光
cstr: 32037.14.aps.71.20211882

Interference suppression method in optical feedback-cavity enhanced absorption spectroscopy technology

Cheng Tong, Yang Tian-Yue, Gong Ting, Guo Gu-Qing, Qiu Xuan-Bing, Li Chuan-Liang, Zhao Gang, Ma Wei-Guang
cstr: 32037.14.aps.71.20211882
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 提出了一种降低光学反馈腔增强吸收光谱(optical feedback-cavity enhanced absorption spectroscopy, OF-CEAS)系统中干涉噪声影响的干涉抑制方法. 使用Ariy函数分析了透射腔模信号中存在的干涉噪声, 研究发现该系统中的干涉信号源自于光束在前腔镜内的多次反射, 并通过更换3种厚度不同的平面反射镜进行验证. 提出利用Ariy函数拟合得到的干涉信号作为无吸收情况下的背景信号, 与测量气体的吸收信号相减直接获得无背景吸收光谱信号. 该方法有效避免了OF-CEAS系统中, 由于环境因素导致腔体稳定性改变等原因造成的测量误差. 最后, 基于该方法测量了1.53 μm附近的乙炔气体吸收特性, 评估系统的探测灵敏度为7.143 × 10–8 (1σ), 实验表明该方法在提高OF-CEAS系统的探测灵敏度方面有着很大的应用前景.
    In this paper, an efficient method of suppressing interference is presented in an optical feedback-cavity enhanced absorption spectroscopy (OF-CEAS) system. The Ariy function is used to analyze the interference signal in the transmission cavity mode signal. It is found that the interference signal in system originates from multiple reflections of the beam in the mirror, which is verified by replacing three kinds of cavity front mirrors with different thickness values. The result obtained by the Ariy function is used as a background signal, and the absorption spectrum signal can be obtained by making its difference from the absorption signal of the measured gas. This method effectively avoids the frequency error caused by the inability to measure the background signal and the absorption signal at the same time in the OF-CEAS system. Finally, the absorption characteristics of acetylene gas at 1.53 μm are measured. Based on the signal-to-noise ratio, the detection sensitivity of the system is evaluated to be 7.143 × 10–8 (1σ). Experiments show that this method is effective in improving the detection sensitivity of OF-CEAS system.
      通信作者: 李传亮, clli@tyust.edu.cn ; 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1810129, 52076145, 11904252)、山西省科技成果转化引导专项项目(批准号: 201904D131025)和应用光学国家重点实验室开放基金(批准号: SKLAO-201902)资助的课题
      Corresponding author: Li Chuan-Liang, clli@tyust.edu.cn ; Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1810129, 52076145, 11904252), the Transformation of Scientific and Technological Achievements Fund of Shanxi Province, China (Grant No. 201904D131025), and the Open Fund of the State Key Laboratory of Applied Optics, China (Grant No. SKLAO-201902).
    [1]

    Toda K, Obata T, Obolkin V A, Potemkin V L, Hirota K, Takeuchi M, Arita S, Khodzher T V, Grachev M A 2010 Atmos. Environ. 44 2427Google Scholar

    [2]

    Heinrich K, Fritsch T, Hering P, Mürtz M 2009 Appl. Phys. B 95 281Google Scholar

    [3]

    Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar

    [4]

    阚瑞峰, 刘文清, 张玉钧, 刘建国 2005 54 1927Google Scholar

    Kan R F, Liu W Q, Zhang Y J, et al. 2005 Acta Phys. Sin. 54 1927Google Scholar

    [5]

    Menzel L, Kosterev A, Curl R, Tittle F, Gmachl C, Capasso F, Sivco D, Baillargeon J, Hutchinson A, Cho A, Urban W 2001 Appl. Phys. B 72 859Google Scholar

    [6]

    Han L, Xia H, Pang T, Zhang Z, Wu B, Liu S, Sun P, Cui X, Wang Y, Sigrist M, Dong F 2018 Infrared Phys. Technol. 91 37Google Scholar

    [7]

    Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C 2021 Anal. Chem. 93 4552Google Scholar

    [8]

    Chang H, Feng S, Qiu X, Meng H, Guo G, He X, He Q, Yang X, Ma W, Kan R, Fittschen C, Li C 2021 Opt. Lett. 45 5897Google Scholar

    [9]

    Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O, Beck V 2010 Atmos. Meas. Tech. 3 375Google Scholar

    [10]

    Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A, Romanini D 2006 Opt. Express 14 11442Google Scholar

    [11]

    Morville J, Kassi S, Chenevier M, Romanini D 2005 Appl. Phys. B 80 1027Google Scholar

    [12]

    Gagliardi G, Loock H P 2014 Cavity-Enhanced Spectroscopy and Sensing (Berlin: Springer) p163

    [13]

    Baran S G, Hancock G, Peverall R, Ritchie G A, van Leeuwen N J 2009 Analyst 134 243Google Scholar

    [14]

    Chen W, Wan F, Zou J, Gu C, Zhou Q 2015 Chin. Phys. B 24 024206Google Scholar

    [15]

    Bergin A, Hancock G, Ritchie G, Weidmann D 2013 Opt. Lett. 38 2475Google Scholar

    [16]

    Manfred K M, Ciaffoni L, Ritchie G A 2015 Appl. Phys. B 120 329Google Scholar

    [17]

    许非, 周晓彬, 刘政波, 赵刚, 马维光 2021 光学精密工程 29 933Google Scholar

    Xu F, Zhou X B, Liu Z B, Zhao G, Ma W G 2021 Optics Prec. Engin. 29 933Google Scholar

    [18]

    Tian J, Zhao G, Fleisher A, Ma W, Jia S 2021 Opt. Express 29 26831

    [19]

    Werle P 2011 Appl. Phys. B 102 313Google Scholar

    [20]

    Bomse D S, Stanton A C, Silver J A 1992 Appl. Opt. 31 718

    [21]

    Hartmann A, Strzoda R, Schrobenhauser R 2014 Appl. Phys. B 115 263

    [22]

    Xiong B, Du Z, Li J 2015 Rev. Sci. Instrum. 86 113104

    [23]

    Li C, Shao L, Meng H, Wei J, Qiu X, He Q, Chen Y 2018 Opt. Express 26 29330

    [24]

    Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938Google Scholar

    [25]

    Morville J, Romanini D 2002 Appl. Phys. B 74 495Google Scholar

    [26]

    Habig J, Nadolny J, Meinen J, Saathoff H, Leisner T 2012 Appl. Phys. B 106 491Google Scholar

    [27]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3Google Scholar

    [28]

    Li C, Guo X, Ji W, Wei J, Qiu X, Ma W 2018 Opt. Quantum Electron. 50 1Google Scholar

    [29]

    Li J, Gao X, Li W, Cao Z, Deng L, Zhao W, Huang M, Zhang W 2006 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 64 338Google Scholar

  • 图 1  基于线性腔的OF-CEAS系统原理图

    Fig. 1.  System schematic of OF-CEAS system based on linear cavity.

    图 2  N2背景下的透射腔模信号

    Fig. 2.  Transmission cavity mode signal with N2 gas.

    图 3  不同厚度前腔镜下的透射腔模信号(点线表示透射腔模信号峰值, 红色实线表示拟合曲线)

    Fig. 3.  Transmission cavity mode signal under cavity front mirror with different thickness (The dotted line represents the peak of the transmitted cavity mode signal, and the solid red line represents the fitting curve).

    图 4  C2H2气体吸收信号和Ariy函数拟合得到的无吸收背景信号

    Fig. 4.  Absorption signal of C2H2 and the background signal obtained by Ariy function fitting.

    图 5  (a) C2H2气体的吸收光谱及Voigt拟合曲线; (b) 拟合残差

    Fig. 5.  (a) Absorption spectrum of C2H2 gas and its Voigt fitting curve; (b) fitting residual

    Baidu
  • [1]

    Toda K, Obata T, Obolkin V A, Potemkin V L, Hirota K, Takeuchi M, Arita S, Khodzher T V, Grachev M A 2010 Atmos. Environ. 44 2427Google Scholar

    [2]

    Heinrich K, Fritsch T, Hering P, Mürtz M 2009 Appl. Phys. B 95 281Google Scholar

    [3]

    Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar

    [4]

    阚瑞峰, 刘文清, 张玉钧, 刘建国 2005 54 1927Google Scholar

    Kan R F, Liu W Q, Zhang Y J, et al. 2005 Acta Phys. Sin. 54 1927Google Scholar

    [5]

    Menzel L, Kosterev A, Curl R, Tittle F, Gmachl C, Capasso F, Sivco D, Baillargeon J, Hutchinson A, Cho A, Urban W 2001 Appl. Phys. B 72 859Google Scholar

    [6]

    Han L, Xia H, Pang T, Zhang Z, Wu B, Liu S, Sun P, Cui X, Wang Y, Sigrist M, Dong F 2018 Infrared Phys. Technol. 91 37Google Scholar

    [7]

    Feng S, Qiu X, Guo G, Zhang E, He Q, He X, Ma W, Fittschen C, Li C 2021 Anal. Chem. 93 4552Google Scholar

    [8]

    Chang H, Feng S, Qiu X, Meng H, Guo G, He X, He Q, Yang X, Ma W, Kan R, Fittschen C, Li C 2021 Opt. Lett. 45 5897Google Scholar

    [9]

    Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O, Beck V 2010 Atmos. Meas. Tech. 3 375Google Scholar

    [10]

    Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A, Romanini D 2006 Opt. Express 14 11442Google Scholar

    [11]

    Morville J, Kassi S, Chenevier M, Romanini D 2005 Appl. Phys. B 80 1027Google Scholar

    [12]

    Gagliardi G, Loock H P 2014 Cavity-Enhanced Spectroscopy and Sensing (Berlin: Springer) p163

    [13]

    Baran S G, Hancock G, Peverall R, Ritchie G A, van Leeuwen N J 2009 Analyst 134 243Google Scholar

    [14]

    Chen W, Wan F, Zou J, Gu C, Zhou Q 2015 Chin. Phys. B 24 024206Google Scholar

    [15]

    Bergin A, Hancock G, Ritchie G, Weidmann D 2013 Opt. Lett. 38 2475Google Scholar

    [16]

    Manfred K M, Ciaffoni L, Ritchie G A 2015 Appl. Phys. B 120 329Google Scholar

    [17]

    许非, 周晓彬, 刘政波, 赵刚, 马维光 2021 光学精密工程 29 933Google Scholar

    Xu F, Zhou X B, Liu Z B, Zhao G, Ma W G 2021 Optics Prec. Engin. 29 933Google Scholar

    [18]

    Tian J, Zhao G, Fleisher A, Ma W, Jia S 2021 Opt. Express 29 26831

    [19]

    Werle P 2011 Appl. Phys. B 102 313Google Scholar

    [20]

    Bomse D S, Stanton A C, Silver J A 1992 Appl. Opt. 31 718

    [21]

    Hartmann A, Strzoda R, Schrobenhauser R 2014 Appl. Phys. B 115 263

    [22]

    Xiong B, Du Z, Li J 2015 Rev. Sci. Instrum. 86 113104

    [23]

    Li C, Shao L, Meng H, Wei J, Qiu X, He Q, Chen Y 2018 Opt. Express 26 29330

    [24]

    Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938Google Scholar

    [25]

    Morville J, Romanini D 2002 Appl. Phys. B 74 495Google Scholar

    [26]

    Habig J, Nadolny J, Meinen J, Saathoff H, Leisner T 2012 Appl. Phys. B 106 491Google Scholar

    [27]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3Google Scholar

    [28]

    Li C, Guo X, Ji W, Wei J, Qiu X, Ma W 2018 Opt. Quantum Electron. 50 1Google Scholar

    [29]

    Li J, Gao X, Li W, Cao Z, Deng L, Zhao W, Huang M, Zhang W 2006 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 64 338Google Scholar

计量
  • 文章访问数:  7689
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-11-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回
Baidu
map