搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量

张江林 姜炳 陈永浩 郭子安 王小鹤 蒋伟 易晗 韩建龙 胡继峰 唐靖宇 陈金根 蔡翔舟

引用本文:
Citation:

基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量

张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟
cstr: 32037.14.aps.71.20211646

Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility

Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou
cstr: 32037.14.aps.71.20211646
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 锂是熔盐堆燃料载体盐的主要材料之一, 其中子核反应截面数据是熔盐堆芯中子物理设计及堆芯长期安全运行中的重要基础数据. 本工作基于中国散裂中子源反角白光中子束线(CSNS Back-n)飞行时间谱仪, 利用中子全截面测量谱仪(NTOX), 采用透射法测量了天然锂中子全截面. 实验中, 中子飞行距离约为76.0 m, 采用15.0 mm和8.00 mm两种厚度的天然锂金属样品, 在0.4 eV—20 MeV中子能量范围内测得了统计计数较好的中子全截面. 特别是在keV及以下能区增补了实验数据, 为锂的核数据评价工作提供了更加丰富和可靠的实验数据. 在此基础上, 采用1/v律和R矩阵理论对MeV以下能区的新测量数据进行了理论分析, 获得了7Li和6Li在260 keV能量附近的中子共振参数.
    Lithium is one of the main materials of fuel carrier salt in molten salt reactors. Its neutron cross section provides an important basic datum for physical design of molten salt reactor core and for evaluating the safety of the core during operation. The total neutron cross sections of natural lithium samples with thickness values of 8.00 mm and 15.0 mm are measured, respectively, in an energy range from 0.4 eV to 20 MeV by using a neutron total cross section spectrometer (NTOX) with the transmission method at the Back-n white neutron source of China Spallation Neutron Source (CSNS Back-n) with a 76.0 m time-of-flight path. High quality experimental data are obtained, especially in the energy region of keV and below, which supply a significative supplement of the data, thereby providing more abundant and reliable experimental data for nuclear data evaluation of lithium. Additionally, a theoretical analysis is carried out under the guidance of 1/v law and the multilevel R-matrix theory. And the resonance parameters of n+6,7Li reaction around the energy of 260 keV are extracted from the measured data.
      通信作者: 韩建龙, hanjianlong@sinap.ac.cn ; 胡继峰, hujifeng@sinap.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDA02010000)、中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-JSC016)和国家自然科学基金重大项目(批准号: 11790321)资助的课题.
      Corresponding author: Han Jian-Long, hanjianlong@sinap.ac.cn ; Hu Ji-Feng, hujifeng@sinap.ac.cn
    • Funds: Project supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (Grant No. XDA02010000), the Frontier Science Key Program of Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC016), and the Major Program of the National Natural Science Foundation of China (Grant No. 11790321).
    [1]

    江绵恒, 徐洪杰, 戴志敏 2012 中国科学院院刊 27 366Google Scholar

    Jiang M H, Xu H J, Dai Z M 2012 Bull. Chin. Acad. Sci. 27 366Google Scholar

    [2]

    Egorov M V 2019 Nucl. Phys. A 986 175Google Scholar

    [3]

    胡继峰, 余呈刚, 邹春燕, 蔡翔舟, 韩建龙, 陈金根 2017 原子能科学技术 51 2013Google Scholar

    Hu J F, Yu C G, Zou C Y, Cai X Z, Han J L, Chen J G 2017 J. Atom. Ener. 51 2013Google Scholar

    [4]

    胡继峰, 王小鹤, 李文江, 李晓晓, 韩建龙 2019 核技术 42 030601Google Scholar

    Hu J F, Wang X H, Li W J, Li X X, Han J L 2019 J. Nucl. Tech. 42 030601Google Scholar

    [5]

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawae M, Babykinaf S, Bossantb M, Cheng G, Dunaevah S, Forresta R A, Fukahorii T, Furutachie N, Ganesanj S, Geg Z, Gritzayk O O, Hermanc M, Hlavačl S, Zhuang Y 2014 Nucl. Data Sheets 120 272Google Scholar

    [6]

    Dunning J R, Pegram G B, Fink G A, Mitchell D P 1935 Phys. Rev. 48 265Google Scholar

    [7]

    Havens W W, Rainwater J 1946 Phys. Rev. 70 154Google Scholar

    [8]

    Hibdon C T 1950 Phys. Rev. 79 747Google Scholar

    [9]

    Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91Google Scholar

    [10]

    Chen H S, Wang X L 2016 Nat. Mater. 15 689Google Scholar

    [11]

    An Q, Bai H Y, Bao J, et al. 2017 J. Instr. 12 07022

    [12]

    唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar

    Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 J. Atom. Ener. 47 1089Google Scholar

    [13]

    Liu X Y, Yang Y W, Liu R, et al. 2019 Nucl. Sci. Tech. 30 139Google Scholar

    [14]

    鲍杰, 陈永浩, 张显彭等 2019 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [15]

    Yi H, Wang T F, Li Y, et al. 2020 J. Instr. 15 03026

    [16]

    Jiang B, Han L J, Jiang W, Hu J F, Wang X H, Chen J G, Cai X Z 2021 Nucl. Instr. Meth. A 1013 165677Google Scholar

    [17]

    Reich C W, Moore M S 1958 Phys. Rev. 111 929Google Scholar

    [18]

    Trkov A, Griffin P J, Simakov S P, et al. 2020 Nucl. Data Sheets 163 1Google Scholar

    [19]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [20]

    Stelson P H, Preston W M 1951 Phys. Rev. 84 162Google Scholar

    [21]

    Johnson C H, Willard H B, Bair J K 1954 Phys. Rev. 96 985Google Scholar

    [22]

    姜炳, 王小鹤, 韩建龙, 胡继峰, 陈金根, 蔡翔舟 2021 原子能科学技术 55 8Google Scholar

    Jiang B, Wang X H, Han J L, Hu J F, Chen J G, Cai X Z 2021 J. Atom. Ener. 55 8Google Scholar

    [23]

    Ajzenberg-Selove F, Lauritsen T 1974 Nucl. Phys. A 227 1Google Scholar

    [24]

    Tilley D R, Kelley J H, Godwin J L, Millener D J, Purcell J E, Sheu C G, Weller H R 2004 Nucl. Phys. A 754 155

    [25]

    Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, van der Marck S 2019 Nucl. Data Sheets 155 1Google Scholar

    [26]

    Willard H B, Bair J K, Kington J D, Cohn H O 1956 Phys. Rev. 101 765Google Scholar

    [27]

    Tilley D R, Cheves C M, Godwin J L, Hale G M, Hofmann H M, Kelley J H, Sheu C G, Weller H R 2002 Nucl. Phys. A 708 3Google Scholar

  • 图 1  实验布局示意图

    Fig. 1.  Schematic drawing of the layout of the measurement.

    图 2  第一层235U裂变层时间-幅度二维谱 (a) 无束流空靶; (b) 有束流空靶

    Fig. 2.  Amplitude-energy distribution in the first 235U cell: (a) Empty target without beam; (b) empty target with beam.

    图 3  裂变室输出的时间信号示例

    Fig. 3.  Signal of flight time in the fission chamber.

    图 4  裂变层第1层235U共振裂变峰的高斯拟合

    Fig. 4.  Gaussian fit of the resonance peaks in the first 235U cell.

    图 5  裂变室测得的归一后的中子能谱

    Fig. 5.  Normalized neutron energy spectrum measured by the fission chamber.

    图 6  测得的天然锂样品的中子透射率

    Fig. 6.  Measured transmission of the natural lithium samples.

    图 7  实验测得的天然锂中子全截面数据与IRDFF评价数据库中的数据 (1 b = 10–28 m2)

    Fig. 7.  The measured neutron total cross section of the natural lithium and the data from IRDFF (1 b = 10–28 m2).

    图 8  1/v律拟合天然锂在0.4 eV—0.1 MeV中子能区全截面测量结果

    Fig. 8.  Fitting results of the measured neutron total cross section of the natural lithium with 1/v law in the energy range of neutron from 0.4 eV to 0.1 MeV.

    图 9  R矩阵理论拟合15.0 mm样品靶中子透射率结果

    Fig. 9.  R-matrix analysis of the measured transmission of 15.0 mm natural lithium sample.

    表 1  裂变层第1层235U共振峰高斯拟合峰值结果

    Table 1.  Parameters of the Gaussian fit of the resonance peaks of the first 235U.

    共振峰/eV裂变峰中心值对应的
    信号输出时间 $ T_{\rm ff}^* $/ns
    TOF/ns
    8.771892730 ± 341893569
    12.401592672 ± 561593511
    19.31276160 ± 461276999
    注: *对应的误差为高斯拟合的误差, 即标准差.
    下载: 导出CSV

    表 2  Li同位素中子核反应共振参数

    Table 2.  Resonance parameters of neutron reaction for 7Li and 6Li.

    IsotopeJ$^{\text{π }}$$ \ell $ReferenceEres/keVΓγ/eVΓn/eVΓα/eV
    7Li3+1Ajzenberg-Selove [23]261.20.07 ± 0.0336.5
    Tilley[24]254 ± 30.07 ± 0.0331 ± 7
    TENDL[25]2590.1232
    本工作261.560.0734.44
    6Li${\dfrac{5}{2}^ - }$1Willaid [26]2558243
    Tilley[27]26211836
    TENDL [25]25492
    本工作255.50110.3031.53
    下载: 导出CSV
    Baidu
  • [1]

    江绵恒, 徐洪杰, 戴志敏 2012 中国科学院院刊 27 366Google Scholar

    Jiang M H, Xu H J, Dai Z M 2012 Bull. Chin. Acad. Sci. 27 366Google Scholar

    [2]

    Egorov M V 2019 Nucl. Phys. A 986 175Google Scholar

    [3]

    胡继峰, 余呈刚, 邹春燕, 蔡翔舟, 韩建龙, 陈金根 2017 原子能科学技术 51 2013Google Scholar

    Hu J F, Yu C G, Zou C Y, Cai X Z, Han J L, Chen J G 2017 J. Atom. Ener. 51 2013Google Scholar

    [4]

    胡继峰, 王小鹤, 李文江, 李晓晓, 韩建龙 2019 核技术 42 030601Google Scholar

    Hu J F, Wang X H, Li W J, Li X X, Han J L 2019 J. Nucl. Tech. 42 030601Google Scholar

    [5]

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawae M, Babykinaf S, Bossantb M, Cheng G, Dunaevah S, Forresta R A, Fukahorii T, Furutachie N, Ganesanj S, Geg Z, Gritzayk O O, Hermanc M, Hlavačl S, Zhuang Y 2014 Nucl. Data Sheets 120 272Google Scholar

    [6]

    Dunning J R, Pegram G B, Fink G A, Mitchell D P 1935 Phys. Rev. 48 265Google Scholar

    [7]

    Havens W W, Rainwater J 1946 Phys. Rev. 70 154Google Scholar

    [8]

    Hibdon C T 1950 Phys. Rev. 79 747Google Scholar

    [9]

    Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91Google Scholar

    [10]

    Chen H S, Wang X L 2016 Nat. Mater. 15 689Google Scholar

    [11]

    An Q, Bai H Y, Bao J, et al. 2017 J. Instr. 12 07022

    [12]

    唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar

    Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 J. Atom. Ener. 47 1089Google Scholar

    [13]

    Liu X Y, Yang Y W, Liu R, et al. 2019 Nucl. Sci. Tech. 30 139Google Scholar

    [14]

    鲍杰, 陈永浩, 张显彭等 2019 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [15]

    Yi H, Wang T F, Li Y, et al. 2020 J. Instr. 15 03026

    [16]

    Jiang B, Han L J, Jiang W, Hu J F, Wang X H, Chen J G, Cai X Z 2021 Nucl. Instr. Meth. A 1013 165677Google Scholar

    [17]

    Reich C W, Moore M S 1958 Phys. Rev. 111 929Google Scholar

    [18]

    Trkov A, Griffin P J, Simakov S P, et al. 2020 Nucl. Data Sheets 163 1Google Scholar

    [19]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [20]

    Stelson P H, Preston W M 1951 Phys. Rev. 84 162Google Scholar

    [21]

    Johnson C H, Willard H B, Bair J K 1954 Phys. Rev. 96 985Google Scholar

    [22]

    姜炳, 王小鹤, 韩建龙, 胡继峰, 陈金根, 蔡翔舟 2021 原子能科学技术 55 8Google Scholar

    Jiang B, Wang X H, Han J L, Hu J F, Chen J G, Cai X Z 2021 J. Atom. Ener. 55 8Google Scholar

    [23]

    Ajzenberg-Selove F, Lauritsen T 1974 Nucl. Phys. A 227 1Google Scholar

    [24]

    Tilley D R, Kelley J H, Godwin J L, Millener D J, Purcell J E, Sheu C G, Weller H R 2004 Nucl. Phys. A 754 155

    [25]

    Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, van der Marck S 2019 Nucl. Data Sheets 155 1Google Scholar

    [26]

    Willard H B, Bair J K, Kington J D, Cohn H O 1956 Phys. Rev. 101 765Google Scholar

    [27]

    Tilley D R, Cheves C M, Godwin J L, Hale G M, Hofmann H M, Kelley J H, Sheu C G, Weller H R 2002 Nucl. Phys. A 708 3Google Scholar

计量
  • 文章访问数:  7647
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 修回日期:  2021-10-31
  • 上网日期:  2022-02-26
  • 刊出日期:  2022-03-05

/

返回文章
返回
Baidu
map