搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于移动渐近线算法的大角度偏转分束器的智能设计

黄辉 胡晨岩 田梓聪 缪秋霞 王慧琴

引用本文:
Citation:

基于移动渐近线算法的大角度偏转分束器的智能设计

黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴

Intelligent design of large angle deflection beam splitter based on method of moving asymptotes

Huang Hui, Hu Chen-Yan, Tian Zi-Cong, Miu Qiu-Xia, Wang Hui-Qin
cstr: 32037.14.aps.70.20210117
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 光分束器是片上集成光子芯片的一个重要组成部分, 常规分束多以T型、Y型、树型输出为主, 往往分束角度和分束效率不能兼顾, 难以同时实现高效和大角度的分束. 本文在移动渐近算法基础上, 结合材料插值与有限元法, 形成了一种计算速度更快、容量更小的适应于微纳光子器件设计的新智能算法, 成功地设计出一尺寸为1 μm×2 μm的大角度偏转分束器, 实现了光束180°直线分离, 分束比近似1∶1, 总效率达90%以上. 相比同样尺寸的几种常规分束器, 该分束器的效率高出近1倍甚至更高. 本智能算法还适用于光偏振分光、路由器、光隔离器等多种无源光子器件的设计, 为高密度片上集成微纳光子器件的设计提供了一种思路和借鉴.
    Photonic chip is a kind of integrated device that uses light as a carrier for information transportation and processing. Owing to its advantages of small size, lightweight, and low power consumption, photonic chip has become the most popular research topic nowadays. The beam splitter is a vital part of on-chip integration. For conventional beam splitting elements, Y-type and tree-branch output are the main elements, which are usually realized by interference principles. However, it is appropriate only for simple conventional beam splitter because the propagation direction of light cannot achieve large angle deflection. In the case of relay loading, optical amplification, pumping, and frequency upconversion, the vertical loading is often required without affecting the main optical path. To complete the large-angle deflection beam splitting, one needs to add a mirror to realize it or use a right-angle mirror structure for geometric double-sided reflection and splitting in traditional ways, but these structures are relatively complicated and difficult to complete on-chip integration. Based on previous work on inversely designed multi-channel wavelength routers and wide spectrum efficient focusing devices by using the intelligent algorithm, and combining the years of research on the coherent superposition theory of multi-scattering of the disordered medium, a large angle beam splitter that can realize from the near-infrared band is designed through using the intelligent algorithm. The beam splitter structure is based on AMTIR-1 glass, the part to be etched is air. The composition of AMTIR-1 is Ge33As12Se55. And the size of the structure is only 1 μm × 2 μm. The beam splitter can achieve 180° linear separation of beams in a range from 800 nm to 1100 nm, the beam splitting ratio of the entire waveband is approximately 1∶1, and the gross beam splitting efficiency is stable between 85% and 92%. Compared with several conventional structures with the same size, the efficiency of the beam splitter designed by this algorithm is higher. At the same time, the algorithm has the advantages of fast computation speed and small computation amount, and it can be completed only by ordinary personal computers without the support of hardware such as workstations. This intelligent algorithm can also be applied to the design of various passive photonic devices such as optical polarization splitters, routers, optical isolators, etc., providing an idea and reference for the design of integrated micro-nano photonic devices on high-density sheets.
      通信作者: 王慧琴, wanghq@sues.edu.cn
      Corresponding author: Wang Hui-Qin, wanghq@sues.edu.cn
    [1]

    Zhou Z, Yin B, Michel J 2015 Light: Sci. Appl. 4 e358Google Scholar

    [2]

    周治平, 郜定山, 汪毅, 陈金林, 冯俊波 2007 激光与光电子进展 44 231Google Scholar

    Zhou Z P, Gao D S, Wang Y 2007 Laser Optoelectron. Prog. 44 231Google Scholar

    [3]

    马慧莲, 王明华, 李锡华, 徐义刚, 宋南辛 2002 光子学报 31 5580Google Scholar

    Ma H L, Wang M H, Li X H, Xu Y G, Song N X 2002 Acta Photon. Sin. 31 5580Google Scholar

    [4]

    郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴 2010 光学学报 30 1501Google Scholar

    Guo H, Wu P, Yu T B, Liao Q H, Liu N H, Huang Y Z 2010 Acta Photon. Sin. 30 1501Google Scholar

    [5]

    Zhang Y, Yang S Y, Andy Eu-Jin Lim 2013 Opt. Express 211 1310

    [6]

    Tahersima M H, Kojima K, Koike-Akino T 2019 Sci. Rep. 9 1368Google Scholar

    [7]

    Ma H S, Huang J, Zhang K W, Yang J B 2020 Opt. Commun. 462 125329

    [8]

    Banerji S, Majumder A, Hamrick A 2020 Nano Commun. Netw. 25 100312Google Scholar

    [9]

    Li J, Han Y, Wu T S, Liu Y M, Yu Z Y, Wang Y, Sun Y H, Li 2020 Opt. Express 28 21

    [10]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J, Vuckovic J 2017 ACS Photon 5 301Google Scholar

    [11]

    PiggottA Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, and Vucković J 2015 Nat. Photonics 9 374Google Scholar

    [12]

    Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N E, Zheng S Q, Lu C C 2021 Chin. Optics Lett. 19 1011301Google Scholar

    [13]

    Lu J, Vucković J 2013 Optical Society of America 21 13351

    [14]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 101367

    [15]

    田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠 2020 69 244201Google Scholar

    Tian Z C, Guo Y M, Hu C Y, Wang H Q, Lu C C 2020 Acta Phys. Sin 69 244201Google Scholar

    [16]

    王慧琴, 龚旗煌 2013 62 214202Google Scholar

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202Google Scholar

    [17]

    王慧琴, 刘正东 2006 55 2281Google Scholar

    Wang H Q, Liu Z D 2006 Acta Phys. Sin. 55 2281Google Scholar

    [18]

    王慧琴, 方利广, 王一凡, 余奥列 2011 60 253Google Scholar

    Wang H Q, Fang L G, Wang Y F, YU A L 2011 Acta Phys. Sin. 60 253Google Scholar

    [19]

    Wang H Q, Ou Y H, Han D F, Wang Y F 2011 Optoelectron. Lett. 7 179Google Scholar

    [20]

    刘正东, 王慧琴 2009 58 1648Google Scholar

    Liu Z D, Wang H Q 2009 Acta Phys. Sin. 58 1648Google Scholar

    [21]

    Svanberg K 1987 Int. J. Num. Method Eng. 24 359Google Scholar

  • 图 1  器件设计流程

    Fig. 1.  Device design flow.

    图 2  拟设计的大角度分束示意图

    Fig. 2.  Diagram of large angle beam splitting.

    图 3  大角度分束器设计流程示意图

    Fig. 3.  Schematic diagram of large angle beam splitter manufacturing process.

    图 4  优化的非匀质结构的光场分布图 (a) 820 nm; (b) 900 nm; (c) 1100 nm

    Fig. 4.  Intelligent algorithm optimized distribution light field at different bands: (a) 820 nm; (b) 900 nm; (c) 1100 nm

    图 5  不同波长下的光场分布图 (a) 800 nm; (b) 820 nm; (c) 880 nm; (d) 900 nm; (e) 940 nm; (f) 980 nm; (g) 1040 nm; (h) 1100 nm

    Fig. 5.  Distribution of light field at different bands: (a) 800 nm; (b) 820 nm; (c) 880 nm; (d) 900 nm; (e) 940 nm; (f) 980 nm; (g) 1040 nm; (h) 1100 nm.

    图 6  不同波长的分束效率

    Fig. 6.  Transmission of different wavelengths.

    图 7  不同结构的规则分束器在820 nm, 900 nm, 1100 nm的光场分布图 (a) T型结构; (b)宽T型结构; (c) Y型结构; (d) Y型链式结构

    Fig. 7.  Light distribution of regular beam splitters with different structures at 820 nm, 900 nm, 1100 nm: (a) T-structure; (b) broad T-structure; (c) Y-structure; (d) Y-chain structure.

    图 8  不同结构两个端口的分波效率 (a) O1; (b) O2

    Fig. 8.  Transmission of two ports with different structures: (a) O1; (b) O2.

    Baidu
  • [1]

    Zhou Z, Yin B, Michel J 2015 Light: Sci. Appl. 4 e358Google Scholar

    [2]

    周治平, 郜定山, 汪毅, 陈金林, 冯俊波 2007 激光与光电子进展 44 231Google Scholar

    Zhou Z P, Gao D S, Wang Y 2007 Laser Optoelectron. Prog. 44 231Google Scholar

    [3]

    马慧莲, 王明华, 李锡华, 徐义刚, 宋南辛 2002 光子学报 31 5580Google Scholar

    Ma H L, Wang M H, Li X H, Xu Y G, Song N X 2002 Acta Photon. Sin. 31 5580Google Scholar

    [4]

    郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴 2010 光学学报 30 1501Google Scholar

    Guo H, Wu P, Yu T B, Liao Q H, Liu N H, Huang Y Z 2010 Acta Photon. Sin. 30 1501Google Scholar

    [5]

    Zhang Y, Yang S Y, Andy Eu-Jin Lim 2013 Opt. Express 211 1310

    [6]

    Tahersima M H, Kojima K, Koike-Akino T 2019 Sci. Rep. 9 1368Google Scholar

    [7]

    Ma H S, Huang J, Zhang K W, Yang J B 2020 Opt. Commun. 462 125329

    [8]

    Banerji S, Majumder A, Hamrick A 2020 Nano Commun. Netw. 25 100312Google Scholar

    [9]

    Li J, Han Y, Wu T S, Liu Y M, Yu Z Y, Wang Y, Sun Y H, Li 2020 Opt. Express 28 21

    [10]

    Su L, Piggott A Y, Sapra N V, Petykiewicz J, Vuckovic J 2017 ACS Photon 5 301Google Scholar

    [11]

    PiggottA Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, and Vucković J 2015 Nat. Photonics 9 374Google Scholar

    [12]

    Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N E, Zheng S Q, Lu C C 2021 Chin. Optics Lett. 19 1011301Google Scholar

    [13]

    Lu J, Vucković J 2013 Optical Society of America 21 13351

    [14]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 101367

    [15]

    田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠 2020 69 244201Google Scholar

    Tian Z C, Guo Y M, Hu C Y, Wang H Q, Lu C C 2020 Acta Phys. Sin 69 244201Google Scholar

    [16]

    王慧琴, 龚旗煌 2013 62 214202Google Scholar

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202Google Scholar

    [17]

    王慧琴, 刘正东 2006 55 2281Google Scholar

    Wang H Q, Liu Z D 2006 Acta Phys. Sin. 55 2281Google Scholar

    [18]

    王慧琴, 方利广, 王一凡, 余奥列 2011 60 253Google Scholar

    Wang H Q, Fang L G, Wang Y F, YU A L 2011 Acta Phys. Sin. 60 253Google Scholar

    [19]

    Wang H Q, Ou Y H, Han D F, Wang Y F 2011 Optoelectron. Lett. 7 179Google Scholar

    [20]

    刘正东, 王慧琴 2009 58 1648Google Scholar

    Liu Z D, Wang H Q 2009 Acta Phys. Sin. 58 1648Google Scholar

    [21]

    Svanberg K 1987 Int. J. Num. Method Eng. 24 359Google Scholar

计量
  • 文章访问数:  8020
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-08-11
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-12-05

/

返回文章
返回
Baidu
map